Low rank structure in highly multivariate models

lain Johnstone

Statistics & Biomedical Data Science, Stanford

ISI Bengalaru, Feb 2 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theme

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

High dimensional data

with low dimensional structure

revives old classification of multivariate methods

James' classification suggests how

phenomena seen in high-dimensional PCA

occur widely in multivariate settings

Theme

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

High dimensional data

with low dimensional structure

revives old classification of multivariate methods

James' classification suggests how

phenomena seen in high-dimensional PCA

occur widely in multivariate settings

joint with Alexei ONATSKI, Prathapa DHARMAWANSA

- ► High-d Phenomena in PCA Overview
 - Spiked model for low-d structure, phase transition, testing

- ► High-d Phenomena in PCA Overview
 - Spiked model for low-d structure, phase transition, testing

- James' family of multivariate methods
 - examples, extension to high-d/low-d structure

- ► High-d Phenomena in PCA Overview
 - Spiked model for low-d structure, phase transition, testing

- James' family of multivariate methods
 - examples, extension to high-d/low-d structure
- Likelihood ratio testing in spiked models
 - Gaussian process limits

- ► High-d Phenomena in PCA Overview
 - Spiked model for low-d structure, phase transition, testing
- James' family of multivariate methods
 - examples, extension to high-d/low-d structure
- Likelihood ratio testing in spiked models
 - Gaussian process limits
- Common threads
 - James' hypergeometric functions, approximations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Principal Components Analysis (PCA, KLT, EOF, POD, EVD ...)

Sample covariance matrix $S = n^{-1} \sum (X_i - \bar{X})(X_i - \bar{X})'$

Eigenstructure:
$$S\mathbf{v}_j = \lambda_j \mathbf{v}_j$$

Reduce dimensionality: p (large) to k (small):

Directions \mathbf{v}_j of maximum variance λ_j , $1 \leq j \leq k$,

 \Leftrightarrow Best low rank k approximation to data.

Scree plot and spikes

[Buja-Hastie-Tibshirani, 95; J, 01]

- scree plot of ordered eigenvalues
- here, p = 256, n = 162 i.e. $p \propto n$
- some (how many?) sample eigenvalues emerge from "bulk"
- which population eigenvalues differ from H_0 , e.g. $\Sigma = I$?

Spiked Covariance Model

- *n* (independent) observations on *p*-vectors: X_i
 correlation structure is "known + low rank":

$$\Sigma = \operatorname{Cov}(X_i) = \sigma^2 \Sigma_0 + \sum_{\nu=1}^{M} \frac{h_{\nu} \gamma_{\nu} \gamma_{\nu}^{T}}{[J, 01]}$$

Interest in

- testing/estimating h_{ν} [today]
- \blacktriangleright determining M
- estimating γ_{ν}, Σ

Example: PCA & population structure from genetic data

Gene (Y) vs. Phenotype (X) shows apparent correlation, but ...

イロト イポト イヨト イヨト

ъ

Example: PCA & population structure from genetic data

Gene (Y) vs. Phenotype (X) shows apparent correlation, but ... 3 subpopulations — Within each population, no correlation exists!

Example: PCA & population structure from genetic data

Patterson et. al. (2006), Price et. al. (2006)

n = #individuals, p = #markers (e.g. SNPs)

$$X_{ij} = (normalized) \text{ allele count},$$

 $case \ i = 1, \dots, n,$ marker $j = 1, \dots, p.$
 $H = n \times sample \text{ covariance matrix of } X_{ij}$

- Eigenvalues of H: $\lambda_1 > \lambda_2 > \ldots > \lambda_{\min(n,p)}$
- How many λ_i are significant?
- Under H_0 , distribution of λ_1 if $H \sim W_p(n, I)$?

Novembre et. al. 2008

"Genes mirror geography within Europe", Nature

Scree Novembre 2008

Some other examples

- 1. Economics: $X_i =$ vector of stocks (indices) at time i $\gamma_{\nu} =$ factor loadings,
- 2. Virology: X_i = mutations at p amino acid sites in sample i γ_{ν} = sectors of functional significance.
- 3. ECG: $X_i = i$ th heartbeat (*p* samples per cycle) $\gamma_{\nu} =$ may be sparse in wavelet basis.
- 4. Sensors: $X_i =$ observations at sensors $\gamma_{\nu} =$ cols. of steering matrix,
- 5. Climate: X_i = measurements from global network at time *i* γ_{ν} = (empirical) orthogonal functions (EOF)

Recap: PCA for rank one spiked model

$$X_1,\ldots,X_n \stackrel{\mathrm{iid}}{\sim} N(0,\Sigma_p) \qquad \qquad \Sigma_p = I_p + h \gamma \gamma'$$

$$\Rightarrow nH = X'X = \sum_{1}^{n} X_{i}X'_{i} \sim W_{p}(n, \Sigma)$$
 Wishart distribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Double scaling: $p = p_n$, $p/n \rightarrow c_1 > 0$.

Recap: PCA for rank one spiked model

$$X_1,\ldots,X_n \stackrel{\mathrm{iid}}{\sim} N(0,\Sigma_p) \qquad \Sigma_p = I_p + \frac{h}{\gamma} \gamma \gamma'$$

n

$$\Rightarrow nH = X'X = \sum_{1}^{''} X_i X_i' \sim W_p(n, \Sigma) \qquad \text{Wishart distribution}$$

Double scaling: $p = p_n$, $p/n \rightarrow c_1 > 0$.

$$\Sigma = I, \quad p = 15 \ n = 60$$

Sample eigenvalues: $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_p.$

 $U_1 \ldots U_{15} \stackrel{ind}{\sim} U(0,9)$

Marchenko-Pastur Law

Let $nH \sim W_p(n, I)$ $p/n \rightarrow c_1 \leq 1$

Empirical d.f. of eigenvalues $\{\lambda_j\}_{j=1}^p$ of H,

$$p^{-1}\#\{\lambda_j \leq x\} \rightarrow \int_{-\infty}^{x} f^{MP}$$

Q-Q plots against Marchenko-Pastur law

- Wachter's (1976) version of scree-plot
- bulk matches Marchenko-Pastur, + some spikes

э

Largest Eigenvalue λ_1 : Numerical illustration

p = 200, n = 800 [i.e. $c_1 = p/n = 0.25$] subcritical critical supercritical Spike $h = 0, 0.25, h_+ = 0.5, 0.75, 1$.

Largest eigenvalue: BBP Phase transition

Different rates, limit distributions:

$$\Sigma = I_p + \frac{h}{\gamma} \gamma \gamma', \qquad p/n \to c_1$$

For
$$h < \sqrt{c_1}$$
: $\lambda_1 \approx \mu(c_1) + \frac{\sigma(c_1)}{n^{2/3}} T W_\beta$,
For $h > \sqrt{c_1}$: $\lambda_1 \approx \rho(h, c_1) + \frac{\tau(h, c_1)}{n^{1/2}} N(0, 1)$

 $\begin{array}{l} [X_i \in \mathbb{C}: \text{ Baik-Ben Arous-Peché (05)}; \\ X_i \in \mathbb{R}: h = \sqrt{c_1}: & \text{Bloemendal-Virag (13)} \end{array} \end{array}$

Inference **below** Phase Transition

For $h < \sqrt{c_1}$: $\lambda_1 \approx \mu(c_1) + \frac{\sigma(c_1)}{n^{2/3}} T W_{\beta},$

- ► Largest eigenvalue λ_1 carries no information
- but ... Can build informative test using all eigenvalues:

[Onatski-Moreira-Hallin, 13]:

Power for
$$heta_1 = \sqrt{-\log(1-h^2/c_1)}$$
.

Inference above Phase Transition

For $h > \sqrt{c_1}$: $\lambda_1 \approx \rho(h, c_1) + \frac{\tau(h, c_1)}{n^{1/2}} N(0, 1)$ $[\rho(h, c_1) > 1 + h]$

- Gaussian limits for λ_1 with $\rho(h) \nearrow$ in h
- ▶ ⇒ can distinguish $h_0 \neq h_1$
- optimality of λ_1 , confidence intervals for h?

Inference above Phase Transition

For $h > \sqrt{c_1}$: $\lambda_1 \approx \rho(h, c_1) + \frac{\tau(h, c_1)}{n^{1/2}} N(0, 1)$ $[\rho(h, c_1) > 1 + h]$

- Gaussian limits for λ_1 with $\rho(h) \nearrow$ in h
- \Rightarrow can distinguish $h_0 \neq h_1$
- optimality of λ_1 , confidence intervals for h?

Other phenomena: inconsistency of sample eigenvectors, estimation of Σ , ...

- High-d Phenomena in PCA
- James' family of multivariate methods
 - examples: MANOVA, regression, CCA ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- extension to high-d/low-d structure
- Likelihood ratio testing in spiked models
- Common threads

Basic equation of classical multivariate statistics

$$\det(H - \mathbf{x}E) = 0$$

with $p \times p$ matrices

$$n_1 H = \sum_{\nu=1}^{n_1} \mathbf{x}_{\nu} \mathbf{x}'_{\nu}$$
 'hypothesis' SS
$$n_2 E = \sum_{\nu=1}^{n_2} \mathbf{z}_{\nu} \mathbf{z}'_{\nu}$$
 'error' SS

(Invariant) methods use generalized eigenvalues $\{x_i\}_{i=1}^p$

 \Leftrightarrow eigenvalues of "*F*-ratio" $E^{-1}H$.

・ロト・日本・モート モー うへぐ

Topics with $E^{-1}H$ in (> 20) textbooks

- Canonical correlation analysis
- Discriminant analysis
- Factor analysis*
- Multidimensional scaling*
- Multivariate Analysis of Variance MANOVA
- Multivarate regression analysis
- Principal Component analysis*
- Signal detection (equality of covariance matrices)

* use limiting form det(H - xI) = 0 with $E = I_p$, $(n_2 \rightarrow \infty)$

Principal Components Analysis (PCA) $[_0F_0]$

Data

$$X = [\mathbf{x}_1 \cdots \mathbf{x}_{n_1}] \qquad p \times n_1$$

Covariance structure:

$$\Sigma = \operatorname{Cov}(\mathbf{x}_{\nu}) = \Sigma_0 + \mathbf{\Phi}$$

Low rank:

$$\Phi = \sum_{k=1}^r \theta_k \gamma_k \gamma'_k$$

Sample covariance matrix:

$$n_1H = XX'$$

Eigenvalues:

$$\det(H-\lambda_i I)=0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Regression - Known Covariance (REG_0) [$_0F_1$]

p-variate response, $\nu = 1, ..., n_1$

$$\begin{aligned} \mathbf{y}_{\nu} = B' \mathbf{x}_{\nu} + \mathbf{z}_{\nu}, & \Sigma_0 = \operatorname{Cov}(\mathbf{z}_{\nu}) & \text{known} \\ H_0 : CB = 0 & C = \text{contrast matrix} \end{aligned}$$

Sums of squares matrix:

$$n_1 H = Y P_H Y'$$
 n_1 hypothesis d.f.

Eigenvalues:

$$\det(H - \lambda_i I) = 0.$$

Low rank: noncentrality (e.g. MANOVA), $M = \mathbb{E}Y = B'X$

$$\Phi = \Sigma_0^{-1} M M' / n_1 = \Sigma_0^{-1} \sum_{k=1}^r \theta_k \gamma_k \gamma'_k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matrix Denoising (also REG_0) [$_0F_1$]

$$Y = M + Z \qquad Z \sim N(0, \sigma^2 I_{n_1} \otimes I_p)$$

Low rank mean:

$$M = \sum_{k=1}^r \sqrt{n_1 heta_k} \gamma_k \psi_k'$$

SVD of Y uses eigenvalues of

$$n_1H = YY'$$

Noncentrality matrix: $\Phi = MM'/n_1 = \sum_{k=1}^r \theta_k \gamma_k \gamma'_k$

[e.g. Cai-Candès-Shen (10), Shabalin-Nobel (13), Rao Nadakuditi (14), Josse-Sardy (16) , Donoho-Gavish(16)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Regression - Multiple Response (REG) $[_1F_1]$

$$\mathbf{y}_{
u} = B' \mathbf{x}_{
u} + \mathbf{z}_{
u}, \qquad \Sigma = \operatorname{Cov}(\mathbf{z}_{
u}) \hspace{0.2cm} ext{unknown}$$

Sums of squares matrices:

 $n_1H = YP_HY'$ n_1 hypothesis d.f. $n_2E = YP_FY'$ n_2 error d.f.

Eigenvalues:

$$\det(H - \tilde{\lambda}_i E) = 0$$
 multivariate F

Low rank: noncentrality

$$\Phi = \Sigma^{-1} M M' / n_1 = \Sigma^{-1} \sum_{k=1}^{r} \theta_k \gamma_k \gamma'_k$$

r

Signal Detection (SigDet) $[_1F_0]$

Data:
$$\mathbf{x}_{
u} = \sum_{1}^{r} \sqrt{\theta}_{k} u_{
u,k} \boldsymbol{\gamma}_{k} + \mathbf{z}_{
u}$$
 $u_{
u,k} \stackrel{ind}{\sim} (0,1), \quad \mathsf{Cov}(\mathbf{z}_{
u}) = \Sigma$

Low rank: test $H_0: \theta = 0$ in

$$\operatorname{Cov}(\mathbf{x}_{
u}) = \mathbf{\Phi} + \mathbf{\Sigma}, \qquad \mathbf{\Phi} = \sum_{1}^{r} \theta_{k} \boldsymbol{\gamma}_{k} \boldsymbol{\gamma}_{k}^{\prime}$$

Two samples: $n_1 H = \sum_{1}^{n_1} \mathbf{x}_{\nu} \mathbf{x}'_{\nu}$ $n_2 E = \sum_{n_1}^{n_1 + n_2} \mathbf{z}_{\nu} \mathbf{z}'_{\nu}$

Eigenvalues: $\det(H - \tilde{\lambda}_i E) = 0$

Canonical Correlation Analysis (CCA) $[_2F_1]$

$$\mathbf{x}_{
u} \in \mathbb{R}^{p}$$
 $\mathbf{y}_{
u} \in \mathbb{R}^{n_{1}}$ $u = 1, \dots, n_{1} + n_{2} + 1$

Seek maximally correlated $a' \mathbf{x}_{\nu}, \ b' \mathbf{y}_{\nu}$

$$\mathsf{Cov}\begin{pmatrix} \mathbf{x}_{\nu} \\ \mathbf{y}_{\nu} \end{pmatrix} = \begin{pmatrix} \Sigma_{11} & \boldsymbol{\Sigma}_{12} \\ \Sigma_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \qquad \mathsf{sample}\begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}$$

Eigenvalues:

$$\det(S_{11}^{-1}S_{12}S_{22}^{-1}S_{21} - \lambda_i I_p) = 0$$

Low rank:

$$\Sigma_{11}^{-1/2}\Sigma_{22}^{-1/2} = \Phi^{1/2} = \sum_{1}^{r} \sqrt{\theta_k} \gamma_k \eta'_k \stackrel{\text{e.g.}}{=} \begin{bmatrix} \operatorname{diag}(\sqrt{\theta_1}, \dots, \sqrt{\theta_r}) & 0\\ 0 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gaussian assumptions

Assume \mathbf{x}_{ν} , resp \mathbf{z}_{ν} are Gaussian (\Rightarrow likelihood ratios)

Why eigenvalues? Group structure $\implies (\lambda_i)$ are maximal invariants.

O.K. for low rank alternatives if subspaces are unknown.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gaussian assumptions

Assume \mathbf{x}_{ν} , resp \mathbf{z}_{ν} are Gaussian (\Rightarrow likelihood ratios)

Why eigenvalues? Group structure $\implies (\lambda_i)$ are maximal invariants.

O.K. for low rank alternatives if subspaces are unknown.

[Wishart definition: If $\sum_{n \times p} \sim N(M, I \otimes \Sigma)$ is a normal data matrix, then

$$H = Z'Z = \sum_{1}^{n} \mathbf{z}_{\nu}\mathbf{z}_{\nu}' \sim W_{p}(n, \Sigma, \Omega),$$

with degrees of freedom *n* , and non-centrality $\Omega = \Sigma^{-1/2} M' M \Sigma^{-1/2}$]

・ロト・西ト・ヨト・ヨー シック

James' Five Fold Way – and $_{p}F_{q}$ -space

 $\begin{array}{c} \mathsf{PCA} \quad [_0F_0] \\ n_1H \sim W_p(n_1,\Sigma_0+\Phi) \end{array}$

 $\begin{array}{l} \text{SigDet} \quad [_1F_0] \\ n_1H \sim W_\rho(n_1, \Sigma + \Phi) \\ n_2E \sim W_\rho(n_2, \Sigma) \end{array}$

 $\mathsf{REG}_{0} \quad [_{0}F_{1}]$ $n_{1}H \sim W_{p}(n_{1}, \Sigma_{0}, n_{1}\Phi)$

 $\begin{array}{c} \mathsf{REG} \quad [_1F_1] \\ n_1 H \sim W_p(n_1, \Sigma, n_1 \Phi) \\ n_2 E \sim W_p(n_2, \Sigma) \end{array}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\begin{array}{c} \mathsf{CCA} \quad [_2F_1]\\ n_1H \sim W_p(n_1, I - \Phi, \Omega(\Phi))\\ n_2E \sim W_p(n_2, I - \Phi)\\ \Omega(\Phi) \quad \text{random} \end{array}$$
$$G = \Phi + Z$$
 Φ, Z symmetric $p \times p$
 $\sqrt{p}Z_{ij} \stackrel{ind}{\sim} N(0, 1)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$G = \Phi + Z$$

 $\sqrt{p}Z_{ij} \stackrel{ind}{\sim} \begin{cases} N(0,1) & i \neq j \\ N(0,2) & i = j \end{cases}$

 Φ, Z symmetric $p \times p$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 GOE_p

$$G = \Phi + Z \qquad \Phi, Z \text{ symmetric } p \times p$$

$$\sqrt{p}Z_{ij} \stackrel{ind}{\sim} \begin{cases} N(0,1) & i \neq j \\ N(0,2) & i = j \end{cases} \qquad \text{GOE}_p$$

Low rank:

$$\Phi = \sum_{1}^{r} \theta_k \gamma_k \gamma'_k$$

Eigenvalues:

 $\det(G - \lambda_i I_p) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$G = \Phi + Z \qquad \Phi, Z \text{ symmetric } p \times p$$

$$\sqrt{p}Z_{ij} \stackrel{ind}{\sim} \begin{cases} N(0,1) & i \neq j \\ N(0,2) & i = j \end{cases} \qquad \text{GOE}_p$$

Low rank:

 $\Phi = \sum_{1}^{r} \theta_k \gamma_k \gamma'_k$

Eigenvalues:

 $\det(G - \lambda_i I_p) = 0$

Limiting Case: $H_n \sim W_p(n_1, \Sigma_{n_1})$ $\Sigma_{n_1} = I_p + \Phi/\sqrt{n_1}$.

For *p* fixed, PCA $\stackrel{n_1 \to \infty}{\longrightarrow}$ SMD:

 $\left[\sqrt{n_1}(H_{n_1}/n_1 - I_p) \stackrel{\mathcal{D}}{\Rightarrow} \Phi + \sqrt{p}Z, \qquad Z \sim \text{GOE}_p \right]$

SMD as the limiting "simple" case

Outline

- High-d Phenomena in PCA
- James' family of multivariate methods
- Likelihood ratio testing in spiked models
 - Gaussian process limits below/above phase transitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- confidence limits for spikes
- Common threads

Phase Transition for λ_1 [of H, $E^{-1}H$]

Rank 1: $\Phi = h\gamma\gamma'$ In the 6 cases: \exists Critical interval $I = [h_-, h_+] \ni 0$ s.t.:

$$\begin{array}{ll} \boldsymbol{h} & \in & I^{0}, \qquad \boldsymbol{p}^{2/3}\left(\lambda_{1}-\boldsymbol{b}_{+}\right) \rightarrow \sigma TW \\ \boldsymbol{h} & \notin & I, \qquad \boldsymbol{p}^{1/2}\left(\lambda_{1}-\boldsymbol{\rho}(\boldsymbol{h})\right) \rightarrow N\left(\boldsymbol{0},\tau^{2}\left(\boldsymbol{h}\right)\right) \end{array}$$

 b_+ = upper endpoint of spectral distribution ('bulk')

Below h_+ : $p^{2/3}$ rate λ_1 carries no information about h

Above *h*₊:

$$p^{1/2}$$
 rate $ho(h)>h$ biased up, $au^2(h)\downarrow 0$ as $h\downarrow h_+.$

[many authors]

Below PT: Convergence of Likelihood Ratios

Likelihood ratios below phase transition

For each case, set $p(\lambda; h) = \text{joint density of } \lambda = (\lambda_1, \dots, \lambda_p).$

$$L_{n.p}(h,\lambda) := p(\lambda;h) / p(\lambda;0)$$

・ロト・日本・モト・モート ヨー うへで

Likelihood ratios below phase transition

For each case, set $p(\lambda; h) = \text{joint density of } \lambda = (\lambda_1, \dots, \lambda_p).$ $L_{n,p}(h, \lambda) := p(\lambda; h) / p(\lambda; 0)$

Theorem: Under the null $(H_0 : h = 0)$,

$$\log L_{n,p}(\boldsymbol{h},\lambda) \xrightarrow{\mathcal{D}} \mathcal{L}(\boldsymbol{h}) \quad \text{in} \quad \mathcal{C}(\boldsymbol{h}_{-},\boldsymbol{h}_{+}),$$

a Gaussian process with

Likelihood ratios below phase transition

For each case, set $p(\lambda; h) = \text{joint density of } \lambda = (\lambda_1, \dots, \lambda_p).$ $L_{n,p}(h, \lambda) := p(\lambda; h) / p(\lambda; 0)$

Theorem: Under the null $(H_0 : h = 0)$,

$$\log L_{n,p}(\boldsymbol{h},\lambda) \xrightarrow{\mathcal{D}} \mathcal{L}(\boldsymbol{h}) \quad \text{in} \quad \mathcal{C}(\boldsymbol{h}_{-},\boldsymbol{h}_{+}),$$

a Gaussian process with

$$\mu(h) = \frac{1}{4} \log \left[1 - \gamma^2(h)\right]$$

$$\Gamma(h_1, h_2) = -\frac{1}{2} \log \left[1 - \gamma(h_1) \gamma(h_2)\right]$$

In particular, $\mu(h) = -\frac{1}{2}\Gamma(h, h)$

 $\implies \{\mathbb{P}_{p,h}\}, \{\mathbb{P}_{p,0}\}$ mutually contiguous as $p \to \infty$

Parameters in the six cases

$$\begin{array}{ll} \mu \left(h \right) & = & \frac{1}{4} \log \left[1 - \gamma^2 \left(h \right) \right] \\ \Gamma \left(h_1, h_2 \right) & = & - \frac{1}{2} \log \left[1 - \gamma \left(h_1 \right) \gamma \left(h_2 \right) \right] \end{array}$$

 $[r = \sqrt{c_1 + c_2 - c_1 c_2}]$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Asymptotic power envelopes

Neyman-Pearson lemma: best test against point alternative

$$h=ar{h}$$
 rejects $H_0:h=0$ for $T_{
ho}=\lograc{d\mathbb{P}_{
ho,ar{h}}}{d\mathbb{P}_{
ho,0}}$ large.

Contiguity + Le Cam's 3rd lemma ⇒ law under alternative h, with σ²(h) = Γ(h, h):

$$\log \frac{d\mathbb{P}_{p,\bar{h}}}{d\mathbb{P}_{p,0}} \stackrel{\mathbb{P}_{p,\bar{h}}}{\Longrightarrow} N\left(\frac{1}{2}\sigma^2(\bar{h}),\sigma^2(\bar{h})\right)$$

▶ \Rightarrow asymptotic Power Envelope (PE) for one-sided h > 0:

$$\operatorname{PE}(h) = 1 - \Phi \Big[\Phi^{-1} (1 - \alpha) - \sigma(h) \Big],$$

 $[\alpha = \text{size}, \Phi = \text{standard normal cdf}]$

Numerical illustration: REG, SigDet

For e.g.
$$c_1 = 0.5$$
, $h_+ = (c_2 + \sqrt{0.5 + 0.5c_2}) / (1 - c_2)$
 \Rightarrow power envelopes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Numerical illustration: REG, SigDet

For e.g.
$$c_1 = 0.5$$
, $h_+ = (c_2 + \sqrt{0.5 + 0.5c_2}) / (1 - c_2)$
 \Rightarrow power envelopes:

Testing below phase transition: (i.e. weak signals) " It is not done well; but you are suprised to find it done at all" [Samuel Johnson]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Above PT: Local Asymptotic Normality

Upward bias in λ_1

First order - limiting bias:

$$\lambda_1 \stackrel{a.s.}{\rightarrow} \rho(h; c_1, c_2) > h+1$$

Bias larger for even small $c_2 > 0!$

$$[c_i = p/n_i]$$

$$\left[\rho(h) = \frac{(h+c_1)(h+1)}{(1-c_2)h-c_2} \xrightarrow{c_2 \to 0} \frac{h+c_1}{h}(h+1) \qquad h_+ = \frac{r+c_2}{1-c_2} \to \sqrt{c_1}\right]$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Gaussian limit for λ_1

For
$$p/n_i \to c_i$$
 and $h > h_+$, [all cases exc. CCA]
 $\sqrt{p}[\lambda_1 - \rho_p(h)] \xrightarrow{\mathcal{D}} N(0, \tau^2(h)).$

Structure of variance:

$$\tau^{2}(h) = \alpha_{1}(h)\rho'(h)$$
$$\rho'(h) = \alpha_{2}(h)(h - h_{-})(h - h_{+})$$

[SMD, PCA: Paul (07), Onatski, Benaych-Georges-Maida (11), SigDet, REG: DJO (14), Non-Gaussian: Wang-Yao (15)]

Likelihood ratios above phase transition

Theorem: (Quadratic approx). If $c_p = (p/n_1, p/n_2) \rightarrow (c_1, c_2)$, $\log L_{n,p}(\theta, \lambda) = \theta \sqrt{p} [\lambda_1 - \rho(h_0, c_p)] - \frac{1}{2} \theta^2 \tau^2(h_0) + o_P(1)$.

- likelihood ratio depends only on largest λ_1
- ▶ all cases except CCA, explicit $g(h), \rho(h), \tau(h)$.

Convergence of experiments

$$\log L_{n,p}(\theta,\lambda) = \frac{\theta}{\sqrt{p}} \left[\lambda_1 - \rho(h,c_p)\right] - \frac{1}{2} \theta^2 \tau^2(h) + o_{\mathrm{P}}(1).$$

Convergence to Gaussian limit – shift experiment in θ – depending on ρ(h) and τ(h):

$$\begin{split} \mathcal{E}_{\rho,h} &= \left\{ (\lambda_1, ..., \lambda_{\rho}) \sim \mathbb{P}_{h+\theta g(h)/\sqrt{\rho}, \rho}, \quad \theta \in \mathbb{R} \right\} \\ &\to \mathcal{E}_h = \left\{ \quad Y \sim N\left(\theta \tau^2\left(h\right), \tau^2\left(h\right)\right), \quad \theta \in \mathbb{R} \right\} \\ &\text{with} \qquad \qquad Y \stackrel{Asy}{\sim} \sqrt{\rho} \left[\lambda_1 - \rho\left(h, c_{\rho}\right) \right] \end{split}$$

• best tests in supercritical regime use λ_1 in rank one case.

Illustration: LAN Confidence intervals for h

Lik. Ratio C.I. = { $h' : H_0 : h = h'$ does not reject in $\mathcal{E}_{p,h'}$ } $\approx {h' : H_0 : \theta = 0$ does not reject in $\mathcal{E}_{h'}$ }

 \Rightarrow Approx. 100 $(1 - \alpha)$ % CI: (\hat{h}^-, \hat{h}^+) , by solving

$$\rho(\hat{h}^{\pm}) \mp z_{\alpha} \tau(\hat{h}^{\pm}) / \sqrt{p} = \lambda_{1p}$$

Illustration: LAN Confidence intervals for h

Lik. Ratio C.I. = { $h' : H_0 : h = h'$ does not reject in $\mathcal{E}_{p,h'}$ } $\approx {h' : H_0 : \theta = 0$ does not reject in $\mathcal{E}_{h'}$ }

 $\Rightarrow \text{ Approx. } 100(1-\alpha)\% \text{ CI: } (\hat{h}^-, \hat{h}^+), \text{ by solving}$ $\rho(\hat{h}^{\pm}) \mp z_{\alpha}\tau(\hat{h}^{\pm})/\sqrt{p} = \lambda_{1p}.$

Coverage probabilities, nominal 95% intervals

	LAN	Basic	Percentile	BCa	
$c_2 = 0, n_1 = p = 100, h + 1 = 10$	94.5	83.6	91.5	86.3	
$n_1 = n_2 = 100, p = 50, h = 15$	94.0	\sim 0	\sim 0	×	
$n_1 = n_2 = 100, p = 10, h = 10$	95.1	85.5	91.5	92.4	
$n_1 = n_2 = 100, p = 2, h = 10$	94.3	89.2	93.6	92.4	
		[1	000 <i>reps</i> , 2SE	pprox 1.4%	6]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Outline

- High-d Phenomena in PCA
- James' family of multivariate methods
- Likelihood ratio testing in spiked models
- Common threads
 - joint densities: James' hypergeometric functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

integral formula and approximations

Ann. Math. Stat. (1964)

DISTRIBUTIONS OF MATRIX VARIATES AND LATENT ROOTS DERIVED FROM NORMAL SAMPLES¹

BY ALAN T. JAMES

Yale University

1. Summary. The paper is largely expository, but some new results are included to round out the paper and bring it up to date.

The following distributions are quoted in Section 7.

1. Type $_{0}F_{0}$, exponential: (i) χ^{2} , (ii) Wishart, (iii) latent roots of the covariance matrix.

2. Type $_{1}F_{0}$, binomial series: (i) variance ratio, F, (ii) latent roots with unequal population covariance matrices.

3. Type $_{0}F_{1}$, Bessel: (i) noncentral χ^{2} , (ii) noncentral Wishart, (iii) noncentral means with known covariance.

4. Type $_{1}F_{1}$, confluent hypergeometric: (i) noncentral F, (ii) noncentral multivariate F, (iii) noncentral latent roots.

5. Type $_{2}F_{1}$, Gaussian hypergeometric: (i) multiple correlation coefficient, (ii) canonical correlation coefficients.

Common structure

SMD PCA REG₀ SigDet REG

 $\Lambda = \operatorname{diag}(\lambda_i) \quad \text{ eigenvalues of } G, \ H \text{ or } E^{-1}H.$

 $\Phi = \Gamma \Theta \Gamma' \qquad \text{low rank alternative, } \Theta = \text{diag}(\theta_1, \dots, \theta_r).$

Common structure

$$\Lambda = \operatorname{diag}(\lambda_i) \quad \text{ eigenvalues of } G, \ H \text{ or } E^{-1}H.$$

 $\Phi = \Gamma \Theta \Gamma' \qquad \text{low rank alternative, } \Theta = \text{diag}(\theta_1, \dots, \theta_r).$

Joint density of eigenvalues in the six cases: with $\Psi = \Psi(\Theta)$,

 $p(\Lambda; \Theta) \propto \rho(\Psi)^{\alpha} \cdot {}_{p}F_{q}(a, b; c\Psi, \Lambda) \pi(\Lambda)\Delta(\Lambda)$ (after James, (64))

The real win for James(64): large p

 $p(\Lambda; \Theta) \propto \rho(\Psi)^{\alpha} \cdot {}_{\mathsf{p}}F_{\mathsf{q}}(a, b; c\Psi, \Lambda) \pi(\Lambda)\Delta(\Lambda)$

• $\pi(\Lambda)\Delta(\Lambda)$

• null hypothesis distributions: $\Theta = 0 \Rightarrow \Psi = 0$ and $|_{p}F_{q} = 1$.

▶ large (p, n_i) ⇒ 'bulk' laws of RMT

• $\rho(\Psi)^{\alpha} \cdot {}_{\mathsf{p}}F_{\mathsf{q}}(a,b;c\Psi,\Lambda)$

- finite rank departure from null in $\Psi = \Psi(\Theta)$
- ▶ large (p, n_i) ⇒ seek informative **approximation**

Null Hypothesis: Links to RMT

 $H_0: \ p_0(\Lambda) = \pi(\Lambda)\Delta(\Lambda) \qquad F_p(\lambda) = p^{-1}\#\{i: \lambda_i \leq \lambda\} \xrightarrow{a.s.} F(\lambda)$

weight	$\pi(\lambda)$	Spectral Law $F(\lambda)$
Gaussian [SMD]	$e^{-\lambda^2/2}$	Semi-circle
Laguerre	$\lambda^{lpha} e^{-\lambda/2}$	Marcenko-Pastur
[PCA REG ₀]		
Jacobi	$\lambda^{a}(1-\lambda)^{b}$	Wachter
[SigDet REG CCA]		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Alternatives: matrix hypergeometric functions

Scalar:
$${}_{p}F_{q}(a,b;x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{p})_{k}}{(b_{1})_{k} \cdots (a_{q})_{k}} \frac{x^{k}}{k!}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Alternatives: matrix hypergeometric functions

Scalar:
$${}_{p}F_{q}(a,b;x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{p})_{k}}{(b_{1})_{k} \cdots (a_{q})_{k}} \frac{x^{k}}{k!}$$

Single matrix argument: S symmetric, usually diagonal

$${}_{\mathsf{p}}\mathsf{F}_{\mathsf{q}}(a,b;S) = \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(a_1)_{\kappa} \cdots (a_{\mathsf{p}})_{\kappa}}{(b_1)_{\kappa} \cdots (a_{\mathsf{q}})_{\kappa}} \frac{C_{\kappa}(S)}{k!}$$
$${}_{0}\mathsf{F}_{0}(S) = e^{\mathsf{tr}S}, \qquad {}_{1}\mathsf{F}_{0}(a,S) = |I-S|^{-a}$$

・ロト・日本・モト・モート ヨー うへで

Alternatives: matrix hypergeometric functions

Scalar:
$${}_{\mathsf{p}}\mathsf{F}_{\mathsf{q}}(a,b;x) = \sum_{k=0}^{\infty} \frac{(a_1)_k \cdots (a_p)_k}{(b_1)_k \cdots (a_q)_k} \frac{x^k}{k!}$$

Single matrix argument: S symmetric, usually diagonal

$${}_{\mathsf{p}}\mathsf{F}_{\mathsf{q}}(a,b;S) = \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(a_1)_{\kappa} \cdots (a_{\mathsf{p}})_{\kappa}}{(b_1)_{\kappa} \cdots (a_{\mathsf{q}})_{\kappa}} \frac{C_{\kappa}(S)}{k!}$$
$${}_{0}\mathsf{F}_{0}(S) = e^{\mathsf{tr}S}, \qquad {}_{1}\mathsf{F}_{0}(a,S) = |I-S|^{-a}$$

Two matrix arguments: S, T symmetric

$${}_{\mathsf{p}}F_{\mathsf{q}}(a,b;S,T) = \int_{O(p)} {}_{\mathsf{p}}F_{\mathsf{q}}(a,b;SUTU')(dU)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint Density - parameter table

 $p(\Lambda; \Theta) \propto \rho(\Psi)^{\alpha} {}_{p}F_{q}(a, b; c\Psi, \Lambda) \pi(\Lambda)\Delta(\Lambda)$

		2 <i>a</i>	2 <i>b</i>	2α	$\Psi(heta)$	$ ho(\Psi)$
SMD	$_{0}F_{0}$			р	θ	$e^{-rac{1}{2} ext{tr}\Psi^2}$
PCA SigDet	${}_{0}^{0}F_{0}$ ${}_{1}F_{0}$	n		n ₁ n ₁	$ heta/(1+ heta) \ heta/(1+ heta)$	$egin{array}{l} m{I} - m{\Psi} \ m{I} - m{\Psi} \ m{I} - m{\Psi} \ m{I} \end{array}$
REG₀ REG	₀ <i>F</i> ₁ ₁ <i>F</i> ₁	п	n ₁ n ₁	n ₁ n ₁	$egin{array}{c} heta \ heta \ heta \end{array}$	$e^{-{ m tr}\Psi} e^{-{ m tr}\Psi}$
CCA	$_{2}F_{1}$	n, n	<i>n</i> ₁	п	heta/I(heta)	$ I - \Psi $

$$n = n_1 + n_2,$$
 $c = \left(\frac{n_1}{2}\right)^{q+1} \left(\frac{2}{n_2}\right)^p$

Joint Density - parameter table

 $p(\Lambda; \Theta) \propto \rho(\Psi)^{\alpha} {}_{p}F_{q}(a, b; c\Psi, \Lambda) \pi(\Lambda)\Delta(\Lambda)$

		2 <i>a</i>	2 <i>b</i>	2α	$\Psi(heta)$	$ ho(\Psi)$
SMD	₀ <i>F</i> ₀			р	θ	$e^{-\frac{1}{2}tr\Psi^2}$
PCA SigDet	${}_{0}^{0}F_{0}$ ${}_{1}F_{0}$	n		n ₁ n ₁	$ heta/(1+ heta) \ heta/(1+ heta)$	$egin{array}{l} I-\Psi \ I-\Psi \end{array}$
REG₀ REG	${}_{0}^{0}F_{1}$ ${}_{1}F_{1}$	п	n ₁ n ₁	n ₁ n ₁	$egin{array}{c} heta \ heta \ heta \end{array}$	$e^{-{ m tr}\Psi} e^{-{ m tr}\Psi}$
CCA	$_{2}F_{1}$	n, n	n_1	п	heta/l(heta)	$ I - \Psi $

Going beyond James:

- Ψ is low rank [often still 1]
- ▶ high dimension: $p/n_1 \rightarrow c_1 > 0$, $p/n_2 \rightarrow c_2 \in [0,1)$

・ロト・日本・モート モー うへぐ

Unifying Tool: An Integral to reduce dimension

Assume $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_r)$, $m = \frac{r}{2} - 1$, and

 $\Psi = diag(\psi, 0, \dots, 0)$ has rank one. Then [DJ, 14]

$${}_{\mathsf{p}}F_{\mathsf{q}}(a,b;\Psi,\Lambda) = \frac{c_m}{\psi^m} \frac{1}{2\pi i} \int_{\mathcal{K}} {}_{\mathsf{p}}F_{\mathsf{q}}(a-m,b-m;\psi s) \prod_{i=1}^r (s-\lambda_i)^{-1/2} ds$$

・ロト・日本・モート モー うへぐ

Unifying Tool: An Integral to reduce dimension

Assume $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_r)$, $m = \frac{r}{2} - 1$, and

 $\Psi = diag(\psi, 0, \dots, 0)$ has rank one. Then [DJ, 14]

$${}_{\mathsf{p}}\mathsf{F}_{\mathsf{q}}(a,b;\Psi,\Lambda) = \frac{c_m}{\psi^m} \frac{1}{2\pi i} \int_{\mathcal{K}} {}_{\mathsf{p}}\mathsf{F}_{\mathsf{q}}(a-m,b-m;\psi s) \prod_{i=1}^r (s-\lambda_i)^{-1/2} ds$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Univariate integral and univariate ${}_{p}F_{q}!$

 $rank(\Psi) = r$: *r*-fold contour integral Passemier-McKay-Chen (14).

Use of the integral

Study likelihood ratio (LR)

$$\frac{\rho(\Lambda,\Theta)}{\rho(\Lambda,0)} = \rho(\alpha;\Psi) \cdot {}_{\mathsf{p}}\mathsf{F}_{\mathsf{q}}(a,b;c\Psi,\Lambda) = \mathsf{integral}$$

under $H_0: \Theta = 0$, in double scaling limit, $p/n_i \rightarrow c_i$.

- uniform Laplace approximations to integral
- apply functional eigenvalue CLT to result
Laplace approximation step - below PT

For each of the six cases, approximate

Laplace approximation step - below PT

 $_{0}F_{0}$ and $_{1}F_{0}$ have explicit form Uniform approximation for $_{0}F_{1}$ follows from Olver (1954) For $_{1}F_{1}$, derive from Pochhammer's representation For $_{2}F_{1}$, extend point-wise analysis of Paris (2013)

▶ < E > ● < ○ < ○</p>

CLT step - below PT

The Laplace approximations imply that

$$\log L_{n,p}(\theta, \Lambda) \stackrel{A_{SY}}{\sim} \Delta_p(\theta) = \sum_i \left[h_{\theta}(\lambda_i) - \int h_{\theta} dF
ight]$$

 $h_{\theta}(\lambda) = \log[z_0(\theta) - \lambda]$

- linear statistic involves all eigenvalues
- Use CLTs from Bai and Silverstein (2004), Zheng (2012), and Young and Pan (2012) to obtain weak convergence of the finite dimensional distributions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Establish tightness

Laplace approximation step - above PT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Conclusion

James' representation using ${}_{p}F_{q}(a, b; c\Psi, \Lambda)$ yields

- simple approximations in large p, low rank cases, e.g.:
- Local Asymptotic Normality of super-critical experiments
- asymptotic power envelopes in the sub-critical regime

THANK YOU!

[Current versions: arXiv 1509.07269, 1411.3875]

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Limiting case example

Hyperspectral image example: Cuprite, Nevada

(224 AVIRIS images, [370, 2507] nm, ~ 9.6 nm apart, 614 x 512 (= 314,368) pixels, atmospherically corrected)

Of Fables, Fairy Tales and Statistical Theory

FABLE: "2. A short story devised to convey some useful lesson" FAIRY TALE: "any of various short tales having folkloric elements and featuring fantastic or magical events or characters." ...deriving from long traditions of oral storytelling

