Geometric statistics of clustering points.

D. Yogeshwaran

Indian Statistical Institute Bangalore.

Joint work with:

B. Błaszczyszyn, ENS-INRIA, Paris

J. E. Yukich, Lehigh University, Pennysylvania.

TIFR-CAM, September 2016.

1 / 22

•
$$X_1, X_2, \ldots, X_n$$
 - random variables.

•
$$X_1, X_2, \ldots, X_n$$
 - random variables.

• $S_n := \sum_{i=1}^n X_i$

•
$$X_1, X_2, \ldots, X_n$$
 - random variables.

- $S_n := \sum_{i=1}^n X_i$
- $E(S_n) \sim n$? $VAR(S_n) \sim n$?

•
$$X_1, X_2, \ldots, X_n$$
 - random variables.

• $S_n := \sum_{i=1}^n X_i$ • $E(S_n) \sim n$? $VAR(S_n) \sim n$?

$$\frac{S_n - \mathsf{E}(S_n)}{\sqrt{\mathsf{VAR}(S_n)}} \stackrel{d}{\Rightarrow} ??$$

2 / 22

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

•
$$X_1, X_2, \ldots, X_n$$
 - random variables.

• $S_n := \sum_{i=1}^n X_i$ • $E(S_n) \sim n$? $VAR(S_n) \sim n$?

$$\frac{S_n - \mathsf{E}(S_n)}{\sqrt{\mathsf{VAR}(S_n)}} \stackrel{d}{\Rightarrow} ??$$

► Textbook example : X₁,..., X_n i.i.d. random variables with E(X₁²) < ∞.</p>

•
$$X_1, X_2, \ldots, X_n$$
 - random variables.

• $S_n := \sum_{i=1}^n X_i$ • $E(S_n) \sim n$? $VAR(S_n) \sim n$?

$$\frac{S_n - \mathsf{E}(S_n)}{\sqrt{\mathsf{VAR}(S_n)}} \stackrel{d}{\Rightarrow} ??$$

• Textbook example : X_1, \ldots, X_n i.i.d. random variables with $E(X_1^2) < \infty$.

What if not independent ?

• $\mathcal{P} \subset \mathbb{R}^d$. - loc. fin. point set. $W_n = [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

P ⊂ ℝ^d. - loc. fin. point set. *W_n* = [-^{*n*^{1/d}}/₂, ^{*n*^{1/d}}/₂]^d.
Score: ξ(*x*, *P*) ∈ ℝ, *x* ∈ *P*.

- $\mathcal{P} \subset \mathbb{R}^d$. loc. fin. point set. $W_n = [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.
- Score: $\xi(x, \mathcal{P}) \in \mathbb{R}, x \in \mathcal{P}$.
 - Represents 'local' interaction of x with \mathcal{P} .

・ロト ・聞ト ・ヨト ・ヨト

• $\mathcal{P} \subset \mathbb{R}^d$. - loc. fin. point set. $W_n = [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

• Score: $\xi(x, \mathcal{P}) \in \mathbb{R}, x \in \mathcal{P}.$

- Represents 'local' interaction of x with \mathcal{P} .

• Geometric Statistic: $H_n = \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P}).$

< ロ > < 同 > < 回 > < 回 > < 回 > <

▶ Random geometric graph : Vertices, V = P, Edges : $x_i \sim x_j$ if $0 < |x_i - x_j| \le r$, r > 0.

▶ Random geometric graph : Vertices, V = P, Edges : $x_i \sim x_j$ if $0 < |x_i - x_j| \le r$, r > 0.

▶ Random geometric graph : Vertices, V = P, Edges : $x_i \sim x_j$ if $0 < |x_i - x_j| \le r$, r > 0.

• $\xi(x_1, \mathcal{P})$ - 'Number' of k-cliques in RGG containing x_1

▶ Random geometric graph : Vertices, V = P, Edges : $x_i \sim x_j$ if $0 < |x_i - x_j| \le r$, r > 0.

► $\xi(x_1, \mathcal{P})$ - 'Number' of *k*-cliques in RGG containing x_1 = $\sum_{(x_2,...,x_k)\in\mathcal{P}^{k-1}}^{\neq} h(x_1,...,x_k) = \sum_{(x_2,...,x_k)\in\mathcal{P}^{k-1}}^{\neq} \frac{1[x_i \sim x_j \ \forall i,j]}{k!}.$

• Boolean Model : $C_B(\mathcal{P}, r) := \bigcup_{x \in \mathcal{P}} B_x(r)$.

• Boolean Model : $C_B(\mathcal{P}, r) := \bigcup_{x \in \mathcal{P}} B_x(r)$.

• Boolean Model : $C_B(\mathcal{P}, r) := \bigcup_{x \in \mathcal{P}} B_x(r)$.

 ξ(x, P) - Fraction of Intrinsic Volume of C_B(P, r) contributed by x.

イロト 不得下 イヨト イヨト 二日

• Boolean Model : $C_B(\mathcal{P}, r) := \cup_{x \in \mathcal{P}} B_x(r)$.

- $H_n :=$ Intrinsic volume of $C_B(\mathcal{P}_n, r)$, $\mathcal{P}_n = \mathcal{P} \cap W_n$.

• $V = \mathcal{P}$, $x \sim y$ if x is the nearest neighbour of y or vice-versa.

• $V = \mathcal{P}$, $x \sim y$ if x is the nearest neighbour of y or vice-versa.

• $V = \mathcal{P}$, $x \sim y$ if x is the nearest neighbour of y or vice-versa.

• $\xi(x, \mathcal{P})$ - Sum of length of edges incident on x.

• $V = \mathcal{P}$, $x \sim y$ if x is the nearest neighbour of y or vice-versa.

• $\xi(x, \mathcal{P})$ - Sum of length of edges incident on x.

► $H_n = \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P})$ - Total edge-length of NNG on \mathcal{P}_n .

ヘロト 人間 とくほ とくほ とう

- **Point process** locally finite random collection of points in \mathbb{R}^d .
- *P* = {X_i}_{i≥1} ⊂ ℝ^d, such that no: of points within a bounded Borel subset (bBS) *B*,*P*(*B*) < ∞ *a.s.*.

- **Point process** locally finite random collection of points in \mathbb{R}^d .
- *P* = {X_i}_{i≥1} ⊂ ℝ^d, such that no: of points within a bounded Borel subset (bBS) *B*,*P*(*B*) < ∞ *a.s.*.
- **simple** points are a.s. distinct.

- **Point process** locally finite random collection of points in \mathbb{R}^d .
- *P* = {X_i}_{i≥1} ⊂ ℝ^d, such that no: of points within a bounded Borel subset (bBS) *B*, *P*(*B*) < ∞ *a.s.*.
- simple points are a.s. distinct.
- Stationary : $\mathcal{P} + x \stackrel{d}{=} \mathcal{P}$.

- **Point process** locally finite random collection of points in \mathbb{R}^d .
- *P* = {X_i}_{i≥1} ⊂ ℝ^d, such that no: of points within a bounded Borel subset (bBS) *B*, *P*(*B*) < ∞ *a.s.*.
- simple points are a.s. distinct.
- Stationary : $\mathcal{P} + x \stackrel{d}{=} \mathcal{P}$.
- ▶ ⇒ $\mathsf{E}(\mathcal{P}(B)) = \lambda |B|$. Assume $\lambda \in (0, \infty)$.

- **Point process** locally finite random collection of points in \mathbb{R}^d .
- *P* = {X_i}_{i≥1} ⊂ ℝ^d, such that no: of points within a bounded Borel subset (bBS) *B*,*P*(*B*) < ∞ *a.s.*.
- simple points are a.s. distinct.
- Stationary : $\mathcal{P} + x \stackrel{d}{=} \mathcal{P}$.
- ► ⇒ $\mathsf{E}(\mathcal{P}(B)) = \lambda |B|$. Assume $\lambda \in (0, \infty)$.
- ▶ $\mathcal{P}_{x_1,...,x_p}$ reduced Palm point process of \mathcal{P} i.e, point process $\mathcal{P}/\{x_1,...,x_p\}$ conditioned on $\{x_1,...,x_p\} \subset \mathcal{P}$.

- **Point process** locally finite random collection of points in \mathbb{R}^d .
- *P* = {X_i}_{i≥1} ⊂ ℝ^d, such that no: of points within a bounded Borel subset (bBS) *B*,*P*(*B*) < ∞ *a.s.*.
- simple points are a.s. distinct.
- Stationary : $\mathcal{P} + x \stackrel{d}{=} \mathcal{P}$.
- ► ⇒ $\mathsf{E}(\mathcal{P}(B)) = \lambda |B|$. Assume $\lambda \in (0, \infty)$.
- ▶ $\mathcal{P}_{x_1,...,x_p}$ reduced Palm point process of \mathcal{P} i.e, point process $\mathcal{P}/\{x_1,...,x_p\}$ conditioned on $\{x_1,...,x_p\} \subset \mathcal{P}$.
- ▶ \mathcal{P} Poisson if $\mathcal{P}(B_i), i = 1, ..., k$ independent for disjoint B_i 's.

- **Point process** locally finite random collection of points in \mathbb{R}^d .
- *P* = {X_i}_{i≥1} ⊂ ℝ^d, such that no: of points within a bounded Borel subset (bBS) *B*,*P*(*B*) < ∞ *a.s.*.
- simple points are a.s. distinct.
- Stationary : $\mathcal{P} + x \stackrel{d}{=} \mathcal{P}$.
- ► ⇒ $\mathsf{E}(\mathcal{P}(B)) = \lambda |B|$. Assume $\lambda \in (0, \infty)$.
- *P*_{x1,...,xp} reduced Palm point process of *P* i.e, point process
 P/{x1,...,xp} conditioned on {x1,...,xp} ⊂ *P*.
- ▶ \mathcal{P} Poisson if $\mathcal{P}(B_i), i = 1, ..., k$ independent for disjoint B_i 's.
- $\mathcal{P}_{x_1,...,x_p} \stackrel{d}{=} \mathcal{P}$ iff \mathcal{P} is Poisson. Slivnyak's theorem
•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := \left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]^d$.

• $H^{\xi}_{n}(\mathcal{P}) := \sum_{X \in \mathcal{P}_{n}} \xi(X, \mathcal{P}).$

•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

•
$$H_n^{\xi}(\mathcal{P}) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}).$$

• $\xi(x, \mathcal{P}) \in \mathbb{R}$ - translation invariant score function.

•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

•
$$H_n^{\xi}(\mathcal{P}) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}).$$

- $\xi(x, \mathcal{P}) \in \mathbb{R}$ translation invariant score function.
- i.e., $\xi(x, \mathcal{X}) = \xi(x + y, \mathcal{X} + y)$ for all $y \in \mathbb{R}^d$.

•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

•
$$H_n^{\xi}(\mathcal{P}) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}).$$

- $\xi(x, \mathcal{P}) \in \mathbb{R}$ translation invariant score function.
- i.e., $\xi(x, \mathcal{X}) = \xi(x + y, \mathcal{X} + y)$ for all $y \in \mathbb{R}^d$.
- Linear Statistics: $\xi \equiv 1$, $H_n(\mathcal{P}) = |\mathcal{P}_n|$.

•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

•
$$H_n^{\xi}(\mathcal{P}) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}).$$

- ▶ $\xi(x, P) \in \mathbb{R}$ translation invariant score function.
- i.e., $\xi(x, \mathcal{X}) = \xi(x + y, \mathcal{X} + y)$ for all $y \in \mathbb{R}^d$.
- Linear Statistics: $\xi \equiv 1$, $H_n(\mathcal{P}) = |\mathcal{P}_n|$.
- random measure $\mu_n(.) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}) \delta_{n^{-1/d}X}(.)$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらの

•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

•
$$H_n^{\xi}(\mathcal{P}) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}).$$

- ▶ $\xi(x, P) \in \mathbb{R}$ translation invariant score function.
- i.e., $\xi(x, \mathcal{X}) = \xi(x + y, \mathcal{X} + y)$ for all $y \in \mathbb{R}^d$.
- Linear Statistics: $\xi \equiv 1$, $H_n(\mathcal{P}) = |\mathcal{P}_n|$.
- random measure $\mu_n(.) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}) \delta_{n^{-1/d}X}(.)$
- Asymptotics for $\mu_n^{\xi}(f) := \int_{W_1} f(x) \mu_n(dx) = \sum_{X \in \mathcal{P}_n} f(n^{-1/d}X) \xi(X, \mathcal{P}) ?$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

•
$$\mathcal{P}_n := \mathcal{P} \cap W_n$$
; $W_n := [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

•
$$H_n^{\xi}(\mathcal{P}) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}).$$

- $\xi(x, \mathcal{P}) \in \mathbb{R}$ translation invariant score function.
- i.e., $\xi(x, \mathcal{X}) = \xi(x + y, \mathcal{X} + y)$ for all $y \in \mathbb{R}^d$.
- Linear Statistics: $\xi \equiv 1$, $H_n(\mathcal{P}) = |\mathcal{P}_n|$.
- random measure $\mu_n(.) := \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}) \delta_{n^{-1/d}X}(.)$
- Asymptotics for $\mu_n^{\xi}(f) := \int_{W_1} f(x) \mu_n(dx) = \sum_{X \in \mathcal{P}_n} f(n^{-1/d}X) \xi(X, \mathcal{P}) ?$
- $H_n^{\xi} = \mu_n^{\xi}(1)$ i.e., $f \equiv 1$.

The Poissonian world

The Poissonian world

 Analysis of local/global functionals of Poisson or Bernoulli pp. cf. e.g.

The Poissonian world

- Analysis of local/global functionals of Poisson or Bernoulli pp. cf. e.g.
 - ► R. Meester & R. Roy Continuum Percolation,
 - M. Penrose Random Geometric Graphs,
 - J. Yukich Limit theorems in discrete stochastic geometry,
 - G. Peccati & M. Reitzner Stochastic analysis for Poisson point processes
 - P. Calka Tessellations
 - Etc....

 Cox point processes, perturbed lattices, Gibbs point processes, α-Determinantal point processes, Zeros of Gaussian entire functions, α-Permanental point processes et al.

- Cox point processes, perturbed lattices, Gibbs point processes, α-Determinantal point processes, Zeros of Gaussian entire functions, α-Permanental point processes et al.
- Geometric functionals of some Gibbs point process -Schreiber-Yukich AIHP, (2013).

- Cox point processes, perturbed lattices, Gibbs point processes, α-Determinantal point processes, Zeros of Gaussian entire functions, α-Permanental point processes et al.
- Geometric functionals of some Gibbs point process -Schreiber-Yukich AIHP, (2013).
- Linear statistics (i.e., ξ ≡ 1) of Determinantal point process -Soshnikov Ann. Prob., (2002).

- Cox point processes, perturbed lattices, Gibbs point processes, α-Determinantal point processes, Zeros of Gaussian entire functions, α-Permanental point processes et al.
- Geometric functionals of some Gibbs point process -Schreiber-Yukich AIHP, (2013).
- Linear statistics (i.e., ξ ≡ 1) of Determinantal point process -Soshnikov Ann. Prob., (2002).
- Linear statistics (i.e., ξ ≡ 1) of α-Determinantal and Permanental process - Shirai-Takahashi J. Func. Anal., (2003).
- Linear Statistics (i.e., ξ ≡ 1) for various point processes -Martin-Yalcin, JSP, (1980), Nazarov-Sodin, CMP, (2012).

- Cox point processes, perturbed lattices, Gibbs point processes, α-Determinantal point processes, Zeros of Gaussian entire functions, α-Permanental point processes et al.
- Geometric functionals of some Gibbs point process -Schreiber-Yukich AIHP, (2013).
- Linear statistics (i.e., ξ ≡ 1) of Determinantal point process -Soshnikov Ann. Prob., (2002).
- Linear statistics (i.e., ξ ≡ 1) of α-Determinantal and Permanental process - Shirai-Takahashi J. Func. Anal., (2003).
- Linear Statistics (i.e., ξ ≡ 1) for various point processes -Martin-Yalcin, JSP, (1980), Nazarov-Sodin, CMP, (2012).
- Geometric statistics of general point processes ?

イロト 不得 トイヨト イヨト 二日

'Not Poisson in Disguise'

Do not listen to the prophets of doom who preach that every point process will eventually be found out to be a Poisson process in disguise!" - G. C. Rota

$$\bullet H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$$

•
$$H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$$

Stabilizing: ∃R(O, P) = inf{r : ...} a.s. finite, such that ∀ locally finite A ⊂ B_r(O)^c,

•
$$H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$$

Stabilizing: ∃R(O, P) = inf{r : ...} a.s. finite, such that ∀ locally finite A ⊂ B_r(O)^c,

 $\xi(O, \mathcal{P}) = \xi(x, \mathcal{P} \cap B_r(O)) = \xi(x, (\mathcal{P} \cap B_r(O)) \cup A)$

•
$$H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$$

Stabilizing: ∃R(O, P) = inf{r : ...} a.s. finite, such that ∀ locally finite A ⊂ B_r(O)^c,

 $\xi(O,\mathcal{P}) = \xi(x,\mathcal{P} \cap B_r(O)) = \xi(x,(\mathcal{P} \cap B_r(O)) \cup A)$

$$\blacktriangleright R(x,\mathcal{P})=R(O,\mathcal{P}-x).$$

•
$$H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$$

Stabilizing: ∃R(O, P) = inf{r : ...} a.s. finite, such that ∀ locally finite A ⊂ B_r(O)^c,

 $\xi(O,\mathcal{P}) = \xi(x,\mathcal{P} \cap B_r(O)) = \xi(x,(\mathcal{P} \cap B_r(O)) \cup A)$

$$\blacktriangleright R(x,\mathcal{P}) = R(O,\mathcal{P}-x).$$

Exponentially Stabilizing: For t large,

$$\sup_{x_1,...,x_p} \mathsf{P}(R(x_1,\mathcal{P}_{x_1,...,x_p}) \ge t) \le a_p e^{-b_p t^c}, \ a_p, b_p, c > 0.$$

•
$$H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$$

Stabilizing: ∃R(O, P) = inf{r : ...} a.s. finite, such that ∀ locally finite A ⊂ B_r(O)^c,

 $\xi(O,\mathcal{P}) = \xi(x,\mathcal{P} \cap B_r(O)) = \xi(x,(\mathcal{P} \cap B_r(O)) \cup A)$

$$\blacktriangleright R(x,\mathcal{P})=R(O,\mathcal{P}-x).$$

Exponentially Stabilizing: For t large,

$$\sup_{x_1,...,x_p} \mathsf{P}(R(x_1,\mathcal{P}_{x_1,...,x_p}) \ge t) \le a_p e^{-b_p t^c}, \ a_p, b_p, c > 0.$$

• Examples 1 and 2 : $R(x, \mathcal{P}_{x_1,...,x_p}) \leq 3r$ a.s. for any \mathcal{P} .

'Clustering' - Borrowed from Statistical Physics.

• k-correlation functions : $\rho^{(k)}(x_1, \ldots, x_k)$ -

$$\mathsf{E}\left(\prod_{i=1}^{k}\mathcal{P}(B_{i})\right) = \int_{\prod_{i=1}^{k}B_{i}}\rho^{(k)}(x_{1},\ldots,x_{k})\mathsf{d}x_{1}\ldots\mathsf{d}x_{k}.$$

• k-correlation functions : $\rho^{(k)}(x_1, \ldots, x_k)$ -

$$\mathsf{E}\left(\prod_{i=1}^{k}\mathcal{P}(B_{i})\right) = \int_{\prod_{i=1}^{k}B_{i}}\rho^{(k)}(x_{1},\ldots,x_{k})\mathsf{d}x_{1}\ldots\mathsf{d}x_{k}.$$

•
$$\{x_1, \ldots, x_{p+q}\}$$
; $s = \min_{1 \le i \le p, 1 \le j \le q} |x_i - x_{p+j}|.$

• k-correlation functions : $\rho^{(k)}(x_1, \ldots, x_k)$ -

$$\mathsf{E}\left(\prod_{i=1}^{k}\mathcal{P}(B_{i})\right) = \int_{\prod_{i=1}^{k}B_{i}}\rho^{(k)}(x_{1},\ldots,x_{k})\mathsf{d}x_{1}\ldots\mathsf{d}x_{k}.$$

► {
$$x_1, \ldots, x_{p+q}$$
}; $s = \min_{1 \le i \le p, 1 \le j \le q} |x_i - x_{p+j}|$.
| $\rho^{(p+q)}(.) - \rho^{(p)}(x_1, \ldots, x_p)\rho^{(q)}(x_{p+1}, \ldots, x_{p+q})| \le C_{p+q}e^{-c_{p+q}s^b}$.

• k-correlation functions : $\rho^{(k)}(x_1, \ldots, x_k)$ -

$$\mathsf{E}\left(\prod_{i=1}^{k}\mathcal{P}(B_{i})\right) = \int_{\prod_{i=1}^{k}B_{i}}\rho^{(k)}(x_{1},\ldots,x_{k})\mathsf{d}x_{1}\ldots\mathsf{d}x_{k}.$$

► {
$$x_1, \ldots, x_{p+q}$$
}; $s = \min_{1 \le i \le p, 1 \le j \le q} |x_i - x_{p+j}|$.
| $\rho^{(p+q)}(.) - \rho^{(p)}(x_1, \ldots, x_p)\rho^{(q)}(x_{p+1}, \ldots, x_{p+q})| \le C_{p+q}e^{-c_{p+q}s^b}$.

• Clustering function $\phi(s) := e^{-s^b}, b > 0.$

<ロ > < 部 > < 言 > < 言 > こ う < で 13 / 22

• k-correlation functions : $\rho^{(k)}(x_1, \ldots, x_k)$ -

$$\mathsf{E}\left(\prod_{i=1}^{k}\mathcal{P}(B_{i})\right) = \int_{\prod_{i=1}^{k}B_{i}}\rho^{(k)}(x_{1},\ldots,x_{k})\mathsf{d}x_{1}\ldots\mathsf{d}x_{k}.$$

- ► { x_1, \ldots, x_{p+q} }; $s = \min_{1 \le i \le p, 1 \le j \le q} |x_i x_{p+j}|$. $|\rho^{(p+q)}(.) - \rho^{(p)}(x_1, \ldots, x_p)\rho^{(q)}(x_{p+1}, \ldots, x_{p+q})| \le C_{p+q}e^{-c_{p+q}s^b}$.
- Clustering function $\phi(s) := e^{-s^b}, b > 0.$
- Clustering constants C_{p+q}, c_{p+q} .

MOMENT CONDITIONS WILL NOT BE MENTIONED EXPLICITLY !

▶ $n^{-1}\mathsf{E}(H_n) \to \mathsf{E}\{\xi(O, \mathcal{P}_O)\} \in [0, \infty).$

- ► $n^{-1}\mathsf{E}(H_n) \to \mathsf{E}\{\xi(O, \mathcal{P}_O)\} \in [0, \infty).$
- ► Bounded stabilization: R(O, P_O) < r < ∞ a.s. : DY-Adler (2015).</p>

- ► $n^{-1}\mathsf{E}(H_n) \to \mathsf{E}\{\xi(O, \mathcal{P}_O)\} \in [0, \infty).$
- ► Bounded stabilization: R(O, P_O) < r < ∞ a.s. : DY-Adler (2015).</p>
- Pair correlation function : $C_2 < \infty, c_2 > 0$.

- ► $n^{-1}\mathsf{E}(H_n) \to \mathsf{E}\{\xi(O, \mathcal{P}_O)\} \in [0, \infty).$
- ► Bounded stabilization: R(O, P_O) < r < ∞ a.s. : DY-Adler (2015).
- Pair correlation function : $C_2 < \infty, c_2 > 0$.
- ▶ n^{-1} VAR $(H_n) \rightarrow \sigma_{\xi}^2 \in [0, \infty)$. Volume order.
Expectation Asymptotics :

- ► $n^{-1}\mathsf{E}(H_n) \to \mathsf{E}\{\xi(O, \mathcal{P}_O)\} \in [0, \infty).$
- ► Bounded stabilization: R(O, P_O) < r < ∞ a.s. : DY-Adler (2015).
- Pair correlation function : $C_2 < \infty, c_2 > 0$.
- ▶ n^{-1} VAR $(H_n) \rightarrow \sigma_{\xi}^2 \in [0, \infty)$. Volume order.
- If $\sigma_{\xi}^2 = 0$, then VAR $(H_n) = \Theta(n^{(d-1)/d})$. Surface order.

► U-statistics :

 $\xi(x,\mathcal{P}):=$ \sum^{\neq} $h(x,X_1,\ldots,X_{k-1}).$ $X_1,...,X_{k-1} \in \mathcal{P} \cap B_r(x)$

► U-statistics :

$$\xi(x,\mathcal{P}) := \sum_{X_1,\ldots,X_{k-1}\in\mathcal{P}\cap\mathcal{B}_r(x)}^{\neq} h(x,X_1,\ldots,X_{k-1}).$$

• Examples of *U*-Statistics: Clique Counts - Example 1.

► U-statistics :

$$\xi(x,\mathcal{P}) := \sum_{X_1,\ldots,X_{k-1}\in\mathcal{P}\cap B_r(x)}^{\neq} h(x,X_1,\ldots,X_{k-1}).$$

- Examples of U-Statistics: Clique Counts Example 1.
- ▶ Point Processes : Clustering point processes i.e., $C_{p+q} < \infty, c_{p+q} > 0.$

► U-statistics :

$$\xi(x,\mathcal{P}) := \sum_{X_1,\ldots,X_{k-1}\in\mathcal{P}\cap B_r(x)}^{\neq} h(x,X_1,\ldots,X_{k-1}).$$

- Examples of U-Statistics: Clique Counts Example 1.
- ▶ Point Processes : Clustering point processes i.e., C_{p+q} < ∞, c_{p+q} > 0.
- Examples : Zeros of Gaussian entire functions. $\mathcal{P} = f^{-1}(0)$. $f(z) = \sum_{k \ge 1} \frac{N_k}{\sqrt{k!}} z^k, z \in \mathbb{C}$.

イロト 不得下 イヨト イヨト 二日

► U-statistics :

$$\xi(x,\mathcal{P}) := \sum_{X_1,\ldots,X_{k-1}\in\mathcal{P}\cap B_r(x)}^{\neq} h(x,X_1,\ldots,X_{k-1}).$$

- Examples of U-Statistics: Clique Counts Example 1.
- ▶ Point Processes : Clustering point processes i.e., $C_{p+q} < \infty, c_{p+q} > 0.$
- Examples : Zeros of Gaussian entire functions. $\mathcal{P} = f^{-1}(0)$. $f(z) = \sum_{k \ge 1} \frac{N_k}{\sqrt{k!}} z^k, z \in \mathbb{C}$.
- Permanental pp: $\rho^{(k)}(x_1,\ldots,x_k) = Per((K(x_i,x_j))_{1 \le i,j \le k})$

► U-statistics :

$$\xi(x,\mathcal{P}) := \sum_{X_1,\ldots,X_{k-1}\in\mathcal{P}\cap B_r(x)}^{\neq} h(x,X_1,\ldots,X_{k-1}).$$

- Examples of U-Statistics: Clique Counts Example 1.
- ▶ Point Processes : Clustering point processes i.e., C_{p+q} < ∞, c_{p+q} > 0.
- Examples : Zeros of Gaussian entire functions. $\mathcal{P} = f^{-1}(0)$. $f(z) = \sum_{k \ge 1} \frac{N_k}{\sqrt{k!}} z^k, z \in \mathbb{C}$.
- Permanental pp: $\rho^{(k)}(x_1,\ldots,x_k) = Per((K(x_i,x_j))_{1 \le i,j \le k})$
- $|K(x,y)| \leq Ce^{-c|x-y|} \Rightarrow \mathcal{P}_{per}$ is clustering.

イロト 不得下 イヨト イヨト 二日

Central Limit Theorem

• $H_n^{\xi} = \sum_{X \in \mathcal{P} \cap W_n} \xi(X, \mathcal{P}).$

Central Limit Theorem

•
$$H_n^{\xi} = \sum_{X \in \mathcal{P} \cap W_n} \xi(X, \mathcal{P}).$$

Theorem If $VAR(H_n^{\xi}) = \Omega(n^{\alpha})$ for some $\alpha \in (0, \infty)$ then as $n \to \infty$

$$rac{H_n^{\xi}-\mathsf{E}ig(H_n^{\xi}ig)}{\sqrt{\mathsf{VAR}ig(H_n^{\xi}ig)}} o N(0,1).$$

イロト イポト イヨト イヨト 二日

16 / 22

▶ Point Processes :
$$\phi(s) = C_k e^{-cs^b}$$
, $c > 0$,
 $C_k = O(k^{\gamma k})$ for $\gamma < 1$.

- ▶ Point Processes : $\phi(s) = C_k e^{-cs^b}$, c > 0, $C_k = O(k^{\gamma k})$ for $\gamma < 1$.
- ► Examples : Determinantal point processes with kernel K(x, y) ≤ Ce^{-c|x-y|},

- ▶ Point Processes : $\phi(s) = C_k e^{-cs^b}$, c > 0, $C_k = O(k^{\gamma k})$ for $\gamma < 1$.
- ► Examples : Determinantal point processes with kernel K(x, y) ≤ Ce^{-c|x-y|},
- Ginibre point process : α = 1 Eigenvalues of N × N i.i.d. complex Gaussian matrix as N → ∞.

- ► Point Processes : $\phi(s) = C_k e^{-cs^b}$, c > 0, $C_k = O(k^{\gamma k})$ for $\gamma < 1$.
- ► Examples : Determinantal point processes with kernel K(x, y) ≤ Ce^{-c|x-y|},
- Ginibre point process : α = 1 Eigenvalues of N × N i.i.d. complex Gaussian matrix as N → ∞.
- Other point processes : Gibbs point process, α-determinantal, perturbed lattices and many Cox point processes.

- ▶ Point Processes : $\phi(s) = C_k e^{-cs^b}$, c > 0, $C_k = O(k^{\gamma k})$ for $\gamma < 1$.
- ► Examples : Determinantal point processes with kernel K(x, y) ≤ Ce^{-c|x-y|},
- Ginibre point process : α = 1 Eigenvalues of N × N i.i.d. complex Gaussian matrix as N → ∞.
- Other point processes : Gibbs point process, α-determinantal, perturbed lattices and many Cox point processes.
- Examples of Scores : Intrinsic Volumes (Example 2), Edge-length in NNG (Example 3).

Central Limit Theorem

 $\bullet H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$

Central Limit Theorem

•
$$H_n = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P})$$

Theorem If $VAR(H_n^{\xi}) = \Omega(n^{\alpha})$ for some $\alpha \in (0, \infty)$ then as $n \to \infty$

$$rac{H_n^{arepsilon}-\mathsf{E}ig(H_n^{arepsilon}ig)}{\sqrt{\mathsf{VAR}ig(H_n^{arepsilon}ig)}}\stackrel{d}{
ightarrow}N(0,1).$$

Mixed moments:

$$m_k(x_1,\ldots,x_k) := \mathsf{E}(\prod_{i=1}^k \xi(x_i,\mathcal{P}_{x_1,\ldots,x_k}))\rho^{(k)}(x_1,\ldots,x_k).$$

Mixed moments:

$$m_k(x_1,...,x_k) := \mathsf{E}(\prod_{i=1}^k \xi(x_i,\mathcal{P}_{x_1,...,x_k}))\rho^{(k)}(x_1,...,x_k).$$

• "correlation functions" for $\mu_n^{\xi}(.) = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}) \delta_{n^{-1/d}X}(.)$.

Mixed moments:

$$m_k(x_1,...,x_k) := \mathsf{E}(\prod_{i=1}^k \xi(x_i,\mathcal{P}_{x_1,...,x_k}))\rho^{(k)}(x_1,...,x_k).$$

- "correlation functions" for $\mu_n^{\xi}(.) = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}) \delta_{n^{-1/d}X}(.)$.
- Clustering: $\underline{x} \in \mathbb{R}^{p}, \underline{y} \in \mathbb{R}^{q}, s = d(\underline{x}, \underline{y})$

$$|m_{
ho+q}(\underline{x},\underline{y})-m_{
ho}(\underline{x})m_{q}(\underline{y})|\leq ilde{\mathcal{C}}_{
ho+q}e^{- ilde{\mathcal{C}}_{
ho+q}s^{a}}.$$

イロト 不良 アイヨト イヨト ヨー うくの

Mixed moments:

$$m_k(x_1,...,x_k) := \mathsf{E}(\prod_{i=1}^k \xi(x_i,\mathcal{P}_{x_1,...,x_k}))\rho^{(k)}(x_1,...,x_k).$$

Correlation functions" for μ^ξ_n(.) = Σ_{X∈P_n} ξ(X, P)δ_{n^{-1/d}X}(.).
Clustering: <u>x</u> ∈ ℝ^p, <u>y</u> ∈ ℝ^q, s = d(<u>x</u>, <u>y</u>)

$$|m_{p+q}(\underline{x},\underline{y}) - m_p(\underline{x})m_q(\underline{y})| \leq ilde{\mathcal{C}}_{p+q}e^{- ilde{\mathcal{C}}_{p+q}s^a}$$

• i.e., Clustering for $\xi \equiv 1 \Rightarrow$ clustering for general ξ .

イロト 不得 トイヨト イヨト 二日

Mixed moments:

$$m_k(x_1,...,x_k) := \mathsf{E}(\prod_{i=1}^k \xi(x_i,\mathcal{P}_{x_1,...,x_k}))\rho^{(k)}(x_1,...,x_k).$$

- "correlation functions" for $\mu_n^{\xi}(.) = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}) \delta_{n^{-1/d}X}(.)$.
- Clustering: $\underline{x} \in \mathbb{R}^{p}, \underline{y} \in \mathbb{R}^{q}, s = d(\underline{x}, \underline{y})$

$$|m_{
ho+q}(\underline{x},\underline{y})-m_{
ho}(\underline{x})m_{q}(\underline{y})|\leq ilde{\mathcal{C}}_{
ho+q}e^{- ilde{\mathcal{C}}_{
ho+q}s^{s}}$$

- i.e., Clustering for $\xi \equiv 1 \Rightarrow$ clustering for general ξ .
- Clustering \Rightarrow higher cumulants $\rightarrow 0 \Rightarrow$ CLT.

イロト 不得 トイヨト イヨト 二日

Mixed moments:

$$m_k(x_1,...,x_k) := \mathsf{E}(\prod_{i=1}^k \xi(x_i,\mathcal{P}_{x_1,...,x_k}))\rho^{(k)}(x_1,...,x_k).$$

- "correlation functions" for $\mu_n^{\xi}(.) = \sum_{X \in \mathcal{P}_n} \xi(X, \mathcal{P}) \delta_{n^{-1/d}X}(.)$.
- Clustering: $\underline{x} \in \mathbb{R}^{p}, \underline{y} \in \mathbb{R}^{q}, s = d(\underline{x}, \underline{y})$

$$|m_{
ho+q}(\underline{x},\underline{y})-m_{
ho}(\underline{x})m_{q}(\underline{y})|\leq ilde{\mathcal{C}}_{
ho+q}e^{- ilde{\mathcal{C}}_{
ho+q}s^{a}}$$

- i.e., Clustering for $\xi \equiv 1 \Rightarrow$ clustering for general ξ .
- Clustering \Rightarrow higher cumulants $\rightarrow 0 \Rightarrow$ CLT.
- Two proofs Generalizing both Baryshnikov-Yukich and Nazarov -Sodin.

► Factorial Mom. Exp.: (Blaszyczyszn, Merzbach, Schmidt.) $E(F(\mathcal{P})) = F(\emptyset) + \sum_{i=1}^{\infty} \frac{1}{i!} \int_{\mathbb{R}^d} D_{x_1,...,x_l} F(\emptyset) \rho^{(l)}(x_1,...,x_l) dx_1 \dots dx_l$

- ► Factorial Mom. Exp.: (Blaszyczyszn, Merzbach, Schmidt.) $E(F(\mathcal{P})) = F(\emptyset) + \sum_{i=1}^{\infty} \frac{1}{i!} \int_{\mathbb{R}^d} D_{x_1,...,x_l} F(\emptyset) \rho^{(l)}(x_1,...,x_l) dx_1 \dots dx_l$
- Add-one cost: $D_x(F(\mathcal{P})) = F(\mathcal{P} \cup \{x\}) F(\mathcal{P}).$

- ► Factorial Mom. Exp.: (Blaszyczyszn, Merzbach, Schmidt.) $E(F(\mathcal{P})) = F(\emptyset) + \sum_{i=1}^{\infty} \frac{1}{i!} \int_{\mathbb{R}^d} D_{x_1,...,x_l} F(\emptyset) \rho^{(l)}(x_1,...,x_l) dx_1 \dots dx_l$
- Add-one cost: $D_x(F(\mathcal{P})) = F(\mathcal{P} \cup \{x\}) F(\mathcal{P}).$
- ► $D_{x_1,...,x_l}F(\mathcal{P}) = D_{x_1}(D_{x_2,...,x_l}(F(\mathcal{P})))$. Difference Operators.

- ► Factorial Mom. Exp.: (Blaszyczyszn, Merzbach, Schmidt.) $E(F(\mathcal{P})) = F(\emptyset) + \sum_{i=1}^{\infty} \frac{1}{i!} \int_{\mathbb{R}^d} D_{x_1,...,x_l} F(\emptyset) \rho^{(l)}(x_1,...,x_l) dx_1 \dots dx_l$
- Add-one cost: $D_x(F(\mathcal{P})) = F(\mathcal{P} \cup \{x\}) F(\mathcal{P}).$
- $D_{x_1,...,x_l}F(\mathcal{P}) = D_{x_1}(D_{x_2,...,x_l}(F(\mathcal{P})))$. Difference Operators.
- Use FME for $E(\prod_{i=1}^{k} \xi(x_i, \mathcal{P}_{x_1, \dots, x_k}))$.

- ► Factorial Mom. Exp.: (Blaszyczyszn, Merzbach, Schmidt.) $E(F(\mathcal{P})) = F(\emptyset) + \sum_{i=1}^{\infty} \frac{1}{i!} \int_{\mathbb{R}^d} D_{x_1,...,x_l} F(\emptyset) \rho^{(l)}(x_1,...,x_l) dx_1 \dots dx_l$
- Add-one cost: $D_x(F(\mathcal{P})) = F(\mathcal{P} \cup \{x\}) F(\mathcal{P}).$
- $D_{x_1,...,x_l}F(\mathcal{P}) = D_{x_1}(D_{x_2,...,x_l}(F(\mathcal{P})))$. Difference Operators.
- Use FME for $E(\prod_{i=1}^{k} \xi(x_i, \mathcal{P}_{x_1, \dots, x_k}))$.
- Expand $m_k(x_1,...,x_k) := \mathsf{E}(\prod_{i=1}^k \xi(x_i,\mathcal{P}_{x_1,...,x_k}))\rho^{(k)}(x_1,...,x_k).$

• Let
$$F(\mathcal{P}; x_1, \ldots, x_k) = \prod_{i=1}^k \xi(x_i, \mathcal{P}).$$

• Let
$$F(\mathcal{P}; x_1, \ldots, x_k) = \prod_{i=1}^k \xi(x_i, \mathcal{P}).$$

▶ If $R^{\xi}(O, \mathcal{P}_{x_1,...,x_k}) < r < \infty$ a.s. and $\{y_1, \ldots, y_l\} \subsetneq \cup_{i=1}^r B_r(x_i)$

- Let $F(\mathcal{P}; x_1, \ldots, x_k) = \prod_{i=1}^k \xi(x_i, \mathcal{P}).$
- If $R^{\xi}(O, \mathcal{P}_{x_1,...,x_k}) < r < \infty$ a.s. and $\{y_1, \ldots, y_l\} \subsetneq \cup_{i=1}^r B_r(x_i)$ $D_{y_1,...,y_l}F(\mathcal{P}; x_1, \ldots, x_k) = 0.$

- Let $F(\mathcal{P}; x_1, \ldots, x_k) = \prod_{i=1}^k \xi(x_i, \mathcal{P}).$
- If $R^{\xi}(O, \mathcal{P}_{x_1,...,x_k}) < r < \infty$ a.s. and $\{y_1, \ldots, y_l\} \subsetneq \cup_{i=1}^r B_r(x_i)$ $D_{y_1,...,y_l}F(\mathcal{P}; x_1, \ldots, x_k) = 0.$
- ► ξ -U-statistic, $D_{y_1,...,y_l}F(\mathcal{P}; x_1,...,x_k) = 0$ for all I large.

- Let $F(\mathcal{P}; x_1, \ldots, x_k) = \prod_{i=1}^k \xi(x_i, \mathcal{P}).$
- If $R^{\xi}(O, \mathcal{P}_{x_1,...,x_k}) < r < \infty$ a.s. and $\{y_1, \ldots, y_l\} \subsetneq \cup_{i=1}^r B_r(x_i)$ $D_{y_1,...,y_l}F(\mathcal{P}; x_1, \ldots, x_k) = 0.$
- ξ -U-statistic, $D_{y_1,\ldots,y_l}F(\mathcal{P}; x_1,\ldots,x_k) = 0$ for all I large.
- ξ -U-statistic \Rightarrow FME has only finite no. of terms.

- Let $F(\mathcal{P}; x_1, \ldots, x_k) = \prod_{i=1}^k \xi(x_i, \mathcal{P}).$
- If $R^{\xi}(O, \mathcal{P}_{x_1,...,x_k}) < r < \infty$ a.s. and $\{y_1, \ldots, y_l\} \subsetneq \cup_{i=1}^r B_r(x_i)$ $D_{y_1,...,y_l}F(\mathcal{P}; x_1, \ldots, x_k) = 0.$
- ξ -U-statistic, $D_{y_1,\ldots,y_l}F(\mathcal{P}; x_1,\ldots,x_k) = 0$ for all I large.
- ξ -U-statistic \Rightarrow FME has only finite no. of terms.
- Growth rates of \tilde{C}_k, \tilde{c}_k (?) \Rightarrow Moderate deviations, Law of iterated logarithms, Berry-Esseen bounds.

References

- B. Błaszczyszyn, DY and J. E. Yukich (2016), Limit theory for geometric statistics of clustering point processes, arXiv :1606.03988
- Ph. A. Martin and T. Yalcin (1980), The charge fluctuations in classical Coulomb systems, J. Statist. Phys..
- ▶ Yu. Baryshnikov and J. E. Yukich (2005), Gaussian limits for random measures in geometric probability. *Ann. Appl. Prob.*.
- F. Nazarov and M. Sodin (2012), Correlation functions for random complex zeroes: Strong clustering and local universality, *Comm. Math. Phys.*.
- B. Błaszczyszyn, E. Merzbach and V. Schmidt (1997), A note on expansion for functionals of spatial marked point processes, Statistics & Probability Letters.