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The Problem - Graph Clustering

I Partition a graph G into k
‘clusters’.

I Cluster Properties
I Many edges within clusters
I Few edges between clusters

I Partitioning Objective
I Cut across fewest edges possible
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Why is this hard?

I Graph partitioning is NP-hard
I Brute force?

I For a small graph with 100 nodes, the number of different
partitions exceeds the number of atoms in the universe!

I Heuristics?
I Optimality, consistency, efficiency . . .
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Spectral...Why and What?

Why?
I Nice approximations that give rise to polynomial time

algorithms
I with theoretical guarantees, provided by statistical analysis.

What?
I Underlying objects in a problem can be represented as

matrices
I Eigenvalues and eigenvectors of these matrices become a

clue to the solution.

4



Spectral Clustering

I Well studied in literature
I Strong theoretical grounding

I Spectral Graph Theory
I Consistency results

I Efficient linear algebraic
computations

K-means

Spectral Clustering
Ng et al. NIPS, 2001

5



Graph Coloring

Theorem (Brooks)

Apart from the following cases
1. G is complete
2. G has odd cycles

we have χG ≤ dmax

Theorem (Gershgorin Disk)

Assume A is a nonnegative n× n real matrix. Then all
eigenvalues of A lie in the set

n⋃
i=1

Aii −∑
j 6=i

Aij , Aii +
∑
j 6=i

Aij


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Graph Coloring

Lemma
Let A be the adjacency matrix of G = (V,E). Let
µ1 ≥ µ2 ≥ . . . ≥ µn be the eigenvalues of A. Then µ1 ≤ dmax.

Proof: By Gershgorin theorem

µ1 ≤ max
1≤i≤n

Aii +
∑
j 6=i

Aij


= max

1≤i≤n

n∑
j=1

Aij

= max
1≤i≤n

deg(i) = dmax
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Graph Coloring

The previous result can be proved using Rayleigh’s principle.

Theorem (Rayleigh’s Principle)

Let A be a nonnegative n× n real matrix and Let µ1 be the
largest eigenvalues of A then

µ1 = max
v 6=0

vTAv

vT v

Note: A is a adjacency matrix of graph G and let µ1 be the
largest eigenvalue of A. Then we already have the following:

I χn ≤ dmax
I µ1 ≤ dmax

Theorem (Wilf, 1967)

χG ≤ bµ1c+ 1

Proof make use of Rayleigh’s principle.
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Some matrices related to graphs

Let G = (V,E) be a graph. |V | = n and |E| = e.
I Adjacency Matrix: A ∈ Rn×n such that

Aij =


0 if i = j,

1 if (i, j) ∈ E,

0 if (i, j) /∈ E.

I Degree Matrix: D ∈ Rn×n is diagonal matrix such that
Dii = deg(i)

I Incidence Matrix: B ∈ Rn×e, where rows indexed by
vertices and columns indexed by edges and Bij = 1 if vertex
i lies on edge j.

I Laplacian Matrix: L ∈ Rn×n is defined as L = D −A
I Normalized Laplacian: L ∈ Rn×n is defined as
L = I −D−1/2AD−1/2
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Graph Laplacian

Let G = (V,E) be a graph. |V | = n and |E| = e. Laplacian:
L ∈ Rn×n such that

Lij =


di if i = j,

−1 if (i, j) ∈ E,

0 if (i, j) /∈ E.

Theorem
Let λ1 ≤ λ2 ≤ . . . ≤ λn be eigenvalues of L. Then
1. L is symmetric and positive semidefinite
2. λ1 = 0

3. λ2 > 0 iff G is connected
4. λk = 0 and λk+1 > 0 iff G has exactly k-disjoint

components
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Cuts

Let G = (V,E) be a graph. |V | = n and |E| = e. Let V1 ⊂ V .
Boundary: The boundary of V1 is defined as

δV1 = {(i, j) ∈ E : i ∈ V1 and j /∈ V1}

I Cut:
Cut(V1) = |δV1|

I Expansion Cut

ExpansionCut(V1, V − V1) =
|δV1|

min{|V1|, |V − V1|}

I Ratio Cut:

RatioCut(V1, V − V1) =
|δV1|
|V1|

+
|δV1|
|V − V1|
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Metrics for partitioning

Let G = (V,E) be a graph. |V | = n and |E| = e. Let V1 ⊂ V .
Boundary: The boundary of V1 is defined as

δV1 = {(i, j) ∈ E : i ∈ V1 and j /∈ V1}

I Edge Expansion:

φG = min
|V1|≤ |V |2

|δV1|
|V1|

I Ratio Cut:

ηG = min
|V1|≤ |V |2

|δV1|
|V1|

+
|δV1|
|V − V1|
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A simple calculation of xTLx

xTLx = xTDx− xTAx

=

n∑
i=1

dix
2
i −

n∑
i,j=1

Aijxixj

=

n∑
i=1

dix
2
i −

∑
(i,j)∈E

xixj + xjxi

=
∑

(i,j)∈E

(x2
i + x2

j )−
∑

(i,j)∈E

xixj + xjxi

=
∑

(i,j)∈E

(xi − xj)2
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Rayleigh Principle or Courant-Fisher
Theorem

Theorem
Let M be a symmetric matrix and let θ1 ≤ θ2 ≤ . . . ≤ θn be
eigenvalues of M . Then

θk = max
n−k+1 dim T

min
x∈T,x6=0

xTMx

xTx

Theorem
Let L be the Laplacian of a graph G = (V,E). Then

λ2 = min
x⊥1

xTMx

xTx
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Cheeger’s Inequality

Definition (Cheeger’s Constant)

Let G = (V,E) be a graph and consider a graph bisection
problem. Then

φG = min
|V1|≤n

2

|δV1|
|V1|

Theorem (Cheeger’s Inequality)

Let dmax denote the maximum degree of G and λ2 be the second
smallest eigenvalue of the Laplacian L of G. Then

λ2

2
≤ φG ≤

√
2λ2dmax

Note: Look at proofs of Mohar and Spielman
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Cheeger’s Inequality (Contd...)

Definition (Cheeger’s Constant)

Let G = (V,E) be a graph and consider a graph bisection
problem. Then

φG = min
|V1|≤n

2

|δV1|
|V1|

Theorem (Cheeger’s Inequality)

Let dmax denote the maximum degree of G and λ2 be the second
smallest eigenvalue of the Laplacian L of G. Then

2φG ≤ λ2 ≤
φG

2

2

Note: Look at proofs of Mohar and Spielman
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Graph Bisection

Recall Ratio Cut:

RCut(V1, V
c

1 ) =
|δV1|
|V1|

+
|δV1|
|V c

1 |

A simple calculation shall give us this:
Define y ∈ Rn as

yi =


√

|V c
1 |

|V1||V | if i ∈ V1,

−
√

|V1|
|V c

1 ||V |
if i /∈ V1.

Then
yTLy = Rcut(V1, V

c
1 )

Let say Y∗ as subset of Rn denote various y defined as in (*) for
various subsets of V1 of V .
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Graph Bisection (contd..)

Objective:
min
y∈Y∗

yTLy

Trivial Relaxation:
min
y∈Rn

yTLy

Not very useful as 1TL1 = 0

Nice Relaxation:
Since yT 1 =

∑
i∈V yi = 0, y is orthogonal to 1. Also since

yT y =
∑

i∈V y
2
i = 1, y is a unit norm vector. Hence the relaxed

problem can be

min
y⊥1

yTLy

yT y
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Graph k-way partitioning

Ratio Cut:

Rcut(V1, . . . , Vk) =

k∑
`=1

|δV`|
|V`|

Lets define Y : Define y ∈ Rn×k such that

Yi` =


1√
|V`|

if i ∈ V`,

0 otherwise.
(**)

Claim: Y TY = I

Claim: Rcut(V1, . . . , Vk) = Trace(Y TLY )
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Graph k-way partitioning

I Objective

min
Y ∈Y∗∗

Trace(Y TLY )

I Relaxation

min
Y ∈Rn

Y T Y =I

Trace(Y TLY )

I Optimal Value
Y opt = [v1 . . . vk]

matrix of k leading orthonormal eigenvectors of L
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With Normalized Cuts

Normalized Cut:

Ncut(V1, . . . , Vk) =

k∑
`=1

|δV`|
Vol(V`)

where Vol(V`) =
∑

i∈V` deg(i)

Lets define Y again: Define y ∈ Rn×k such that

Yi` =


1√

Vol(V`)
if i ∈ V`,

0 otherwise.
(***)

Claim: Y TDY = I

Claim: Ncut(V1, . . . , Vk) = Trace(Y TLY )
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With normalized cuts

I Objective

min
Y ∈Y∗∗∗

Trace(Y TLY )

I Relaxation

min
Y ∈Rn

Y TDY =I

Trace(Y TLY )

I By substituting Ỹ = D
1
2Y the objective translates to

min
Ỹ ∈Rn

Ỹ T Ỹ =I

Trace(Ỹ TD−
1
2LD−

1
2 Ỹ )
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Spectral Clustering Algorithm

Algorithm
1. Compute graph Laplacian or normalized graph Laplacian
2. Compute k-leading eigenvectors Y ∈ Rn×k of L
3. Normalize rows of Y and say it is Ȳ
4. Run k-means on rows of Ȳ
5. according to this partition V

K-means Step

S∗ = arg max
S∈Rn×k

Shas at most k distinct rows

||Ȳ − S||2F
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On K-means

Must Look at: Ostrovsky et. al (2012): The Effectiveness of
Lloyd-Type Methods for the k-Means Problem

Theorem
Assume that Y satisfies “epsilon-separability”, where ε ≤ 0.015.
Then the k-means algorithm of Ostrovsky (2012) returns a
solution S∗ such that

‖Y − S∗‖F ≤ (1 + ε) min
S∈Rn×k

Shas at most k distinct rows

‖Y − S‖F

with probability (1−O(
√
ε)) in time O(nrk + rk3). Here,

γ =

√
1− ε2

1− 37ε2
.
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Error

Let Z be the true membership matrix

Zi` =


1 if i ∈ V`,

0 otherwise.

Let Z ′ be the membership obtained from the algorithm.
Then the error is

Error = min
Permutation matrices

P∈0,1k×k

1

2
‖Z − Z ′P‖2F
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Perturbation Analysis

Let B̃ ∈ Rn×n be a symmetric matrix
H ∈ Rn×n be a symmetric perturbation matrix

and B = B̃ +H

Let λ1 ≤ · · · ≤ λn be the eigenvalues of B̃
µ1 ≤ · · · ≤ µn be the eigenvalues of B

and ρ1 ≤ · · · ≤ ρn be the eigenvalues of H
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Matrix Perturbation Theory

Tools of the Trade: Weyl’s Inequality

For i = 1, · · · , n
λi + ρ1 ≤ µi ≤ λi + ρn

Corollary: |µi − λi| ≤ max{|ρ1|, |ρn|} = ‖B − B̃‖2

Tools of the Trade: Davis-Kahan Theorem
Let δ = λk+1 − λk.
Let Ỹ , Y be the k-leading orthonormal eigenvectors of B̃, B
respectively.
If δ > 2‖B − B̃‖2, then

‖Y − Ỹ Q‖F ≤
2
√

2k

δ
‖B − B̃‖2

for some orthonormal Q ∈ Rk×k.
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Perturbation Analysis∗

Let G = (V,E) be a graph with Laplacian L. If there exists an
“ideal graph” (that has equal sized disjoint components) with
Laplacian L̃ such that

‖L− L̃‖2 <
n

2k

Then there exists orthonormal Q, k × k matrix such that

‖Y −
√
k

n
ZQ‖F ≤

2k
3
2

n
‖L− L̃‖2

Here
‖A‖2 = max

x 6=0

‖Ax‖2
‖x‖2

and the error of SC is

Error ≤ 256
k2

n
‖L− L̃‖2

∗(Ng and Jordan, 2002, NIPS)
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Random Graph Models

I Latent Space Model
I z1, . . . , zn ∈ Rk - Latent vectors for each node. IID random

variables.
I The Model: For the random adjacency matrix W ∈ Rn×n

P (W |z1, . . . , zn) =
∏
i<j

P (Wij |zi, zj)

I W = E(W |Z) ∈ Rn×n completely parametrises the model.
I Stochastic Block Model

I Special case of Latent Space Model with

W = ZBZT

I Membership matrix Z ∈ {0, 1}n×k has one 1 in each row
I Block matrix B ∈ [0, 1]n×k
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The Setup

I Goal: Prove that Spectral Clustering is weakly consistent
over Stochastic Block Model

I All results will be asymptotic in n, the number of graph
nodes

I Series of observed matrices W (n) ∈ {0, 1}n×n, L(n) and D(n)

I Series of population matrices W (n) ∈ [0, 1]n×n, L (n) and
D (n)
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Stochastic Blockmodel Analysis

Question: Can we achieve consistency results if we let the the
number of clusters grow with the number of nodes? (Rohe,
Chatterjee and Yu, Ann. Stats, 2011)

Block Model: Let Z ∈ {0, 1}n×k and it has exactly one 1 in
each row and atleast one 1 in each column. Let B ∈ [0, 1]k×k be
a full rank and symmetric matrix, where diagonal elements of B
has larger values than off diagonal. Then the stochastic block
model is W = ZBZT . (W is a population version of W )

Strategy:
I Given Z choose B and define W
I Sample W from W and get Z ′ from a spectral algorithm.

Compute the error by comparing Z ′ and Z.
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Stochastic Blockmodel Analysis

Aim: Let L(n) ∈ {0, 1}n×n and L(n) ∈ [0, 1]n×n be sequence of
observed and population versions of Laplacians. Then show that
under stochastic block model difference between eigenvectors of
L(n) and L(n) can bounded.

Result:(Rohe, Chatterjee and Yu, Ann. Stats, 2011) Spectral
clustering algorithm is week consistent.
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The Setup

I Goal: Prove that Spectral Clustering is weakly consistent
over Stochastic Block Model

I All results will be asymptotic in n, the number of graph
nodes

I Series of observed matrices W (n) ∈ {0, 1}n×n, L(n) and D(n)

I Series of population matrices W (n) ∈ [0, 1]n×n, L (n) and
D (n)
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Proof Sketch

1. Bound the eigenvalues of L(n) and L (n)

2. Bound the eigenvectors of L(n) and L (n)

3. Bound the k-means error
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Bounding Eigenvalues

Bird’s eye view
1. Bound the Frobenius norm

‖L(n) −L (n)‖F = O(· · · ) almost surely

2. ‖· · ·‖2 ≤ ‖· · ·‖F
3. Weyl’s inequality

‖L(n) −L (n)‖2 < ε⇒ ‖λ(n)
i − λ̃

(n)
i ‖ ≤ ε ∀i
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Bounding Eigenvalues - Obstacle

Bird’s eye view
1. Bound the Frobenius norm

‖L(n) −L (n)‖F = O(· · · ) almost surely

Not Possible!
2. ‖· · ·‖2 ≤ ‖· · ·‖F
3. Weyl’s inequality

‖L(n) −L (n)‖2 < ε⇒ ‖λ(n)
i − λ̃

(n)
i ‖ ≤ ε ∀i
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Bounding Eigenvalues - Obstacle - Example

Counter Example: W ∈ {0, 1}n×n ∼ Bernoulli(1/2)

I W/n behaves similar to L = D−1/2WD−1/2 as entries of D
grow linearly with n.

I ‖W/n− E(W )/n‖F = 1
n

√∑
i,j(Wij − E(Wij))2 = 1/2

Diverges!
I However, ‖WW/n2 − E(WW )/n2‖F converges!

‖WW/n2 − E(WW )/n2‖F =
1

n2

√∑
i,j

([WW ]ij − E[WW ]ij)2

= o

(
log n

n1/2

)
where [WW ]ij ∼ Binomial(n, 1/4)
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Bounding Eigenvalues - Obstacle -
Resolution

I Bound ‖L(n)L(n) −L (n)L (n)‖F instead of ‖L(n) −L (n)‖F

Lemma
For a real symmetric matrix M ∈ Rn×n,
1. λ2 is an eigenvalue of MM ⇔ λ or −λ is an eigenvalue of

M .
2. Mν = λν ⇒MMν = λ2ν.
3. MMν = λ2ν ⇒ ν can be written as linear combination of

eigenvectors corresponding to λ or −λ.

I Therefore, spectrum of L is implied from that of LL.
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Bounding Eigenvalues - Main Theorem

Theorem 1: Convergence in Frobenius Norm

Define

τn = min
i

D
(n)
ii /n

If there exists N > 0 such that τ2
n log n > 2 ∀ n > N , then

‖L(n)L(n) −L (n)L (n)‖F = o

(
log n

τ2
nn

1/2

)
almost surely.

I τn = min expected degree
max possible degree

I τn is a measure of sparsity of the graph.
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Bounding Eigenvalues - Main Theorem
Proof

Tools of the Trade: Borel Cantelli Lemma
Let E1, . . . , En be a sequence of events in a probability space.

∞∑
n=1

P(En) <∞⇒ P(∩∞n=1 ∪∞k=n Ek) = 0

Take En to be the event where ‖L
(n)L(n)−L (n)L (n)‖F
c logn/(τ2n1/2ε)

≥ ε.

∴ ‖L(n)L(n) −L (n)L (n)‖F = o

(
log n

τ2
nn

1/2

)
almost surely.
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Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

Proof Strategy:
I L = D−1/2WD−1/2. D and W are not independent which

means the entries of L are not independent.
I Independence is an essential ingredient for using

concentration of measure inequalities!
I Introduce an intermediate Laplacian L̃

I L = D−1/2WD−1/2

I L̃ = D−1/2WD−1/2

I L = D−1/2W D−1/2

I Introduce two sets Γ and Λ
I Γ constrains the matrix D and helps in bounding
‖LL− L̃L̃‖F

I Λ constrains WD−1W and helps in bounding ‖L̃L̃−L L ‖F
I Notation: PΓΛ(B) = P(B ∩ (Γ ∩ Λ))
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Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

Define a = 32
√

2 logn
τ2n1/2

P
(
‖LL−L L ‖F ≥ a

)
≤ PΓΛ

(
‖LL−L L ‖F ≥ a

)
+ P

(
(Γ ∩ Λ)c

)
≤ PΓΛ

(∑
i 6=j

[LL−L L ]2ij ≥ a2/2
)
− term 1

+ PΓΛ

(∑
i

[LL−L L ]2ii ≥ a2/2
)
− term 2

+ P
(
(Γ ∩ Λ)c

)
− term 3
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Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

PΓΛ

(∑
i 6=j

[LL−L L ]2ij ≥ a2/2
)
− term 1

≤
∑
i 6=j

[
PΓΛ

(
|LL− L̃L̃|ij ≥

a√
8n

)
+ PΓΛ

(
|L̃L̃−L L |ij ≥

a√
8n

)]

|L̃L̃−L L |ij︸ ︷︷ ︸
bound by Λ

=
1

(DiiDjj)1/2

∣∣∣∑
k

(WikWjk −WikWjk)/Dkk

∣∣∣
≤ 1

n2τ

∣∣∣∑
k

(WikWjk −WikWjk)/Dkk

∣∣∣
|LL− L̃L̃|ij︸ ︷︷ ︸
bound by Γ

≤
∑
k

∣∣∣ 1

Dkk(DiiDjj)1/2
− 1

Dkk(DiiDjj)1/2

∣∣∣
43



Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

Define

Λ =
⋂
i,j

{∣∣∣∑
k

(WikWjk −WikWjk)/Dkk < n1/2 log n
∣∣∣}

Γ =
⋂
i,j,k

{ 1

Dkk(DiiDjj)1/2
∈ [1− n−1/2 log n, 1 + n−1/2 log n]

Dkk(DiiDjj)1/2

}

I With Λ and Γ, term 1 = 0

I Similarly, we can show that term 2 = 0

I All that is remaining is to bound term 3
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Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

Tools of the Trade: Hoeffding’s Inequality

Let X1, . . . , Xn be i.i.d. random variables with bounds
Xi ∈ [ai, bi]. Let Sn =

∑n
i=1Xi. Then

P
(∣∣Sn − E[Sn]

∣∣ > t
)
≤ 2e

− 2t2∑n
i=1

(bi−ai)
2

I Dii ∈ [0, n] ∀ i and are i.i.d.
I WikWjk/Dkk ∈ [0, 1/τ ] ∀ k.

Applying Hoeffding’s inequality, we get the required exponential
bound on P

(
(Γ ∩ Λ)c

)
.
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Bounding Eigenvectors

I The next step is to bound the eigenvectors of L and L .
I Notation:

I For symmetric matrix M , λ(M) is the set of eigenvalues of
M .

I For a real interval S ⊂ R, λS(M) = {λ(M) ∩ S}
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Bounding Eigenvectors (Contd...)

Tools of the Trade: Davis-Kahan Theorem
Let S ⊂ R be an interval. Denote X as an orthonormal matrix
whose column space is the eigenspace of L L corresponding to
the eigenvalues in λS(L L ). Denote by X the analogous matrix
for LL. Define the distance between S and the spectrum of
L L outside of S as

δ = min{|`− s|; ` ∈ λ(L L ), ` /∈ S, s ∈ S}

If X and X are of the same dimension, then there is an
orthonormal matrix O such that

1

2
‖X −X O‖2F ≤

‖LL−L L ‖2F
δ2
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Bounding Eigenvectors

Tools of the Trade: Weyl’s Inequality

Define λ̄1 ≥ . . . ≥ λ̄n to be the elements of λ(L L ) and
λ1 ≥ . . . ≥ λn to be the elements of λ(LL). Then the
eigenvalues of L L and LL converge in the following sense.

max
i
|λi − λ̄i| ≤ ‖LL−L L ‖2

I Weyl’s inequality bounds the eigenvalues of L L and LL.
I Davis-Kahan theory bounds the eigenvectors of L L and
LL.
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....and Then

I and then convergence of eigenvalues and eigenvectors...
I and then K-means...
I and then then result.
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Bounding Eigenvectors - Main Theorem

Theorem 2: Convergence of Eigenvalues and
Eigenvectors

Define sequences of intervals Sn ∈ R and S′n = {` : `2 ∈ Sn}.
Define

δn = inf{|`− s|; ` ∈ λ(L (n)L (n)), ` /∈ Sn, s ∈ Sn}
δ′n = inf{|`− s|; ` ∈ λSn(L (n)L (n)), s /∈ Sn}

Let kn be the size of λS′n(L(n)) and Kn be the size of λS′n(L (n)).
Let Xn ∈ Rn×kn and Xn ∈ Rn×Kn be the matrices whose
orthonormal columns are eigenvectors corresponding to
eigenvalues in λS′n(L(n)) and λS′n(L (n)) respectively.
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Bounding Eigenvectors - Main Theorem

Theorem 2: Convergence of Eigenvalues and
Eigenvectors (Contd...)

Assumptions:
1. (Sparsity) τ2

n > 2/ log n

2. (Eigen-gap) n−1/2(log n)2 = O(min{δn, δ′n})
Then eventually, kn = Kn. Afterward,

1

2
‖Xn −XnOn‖F = o

( log n

δnτ2
nn

1/2

)
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Bounding Eigenvectors - Main Theorem
Proof

max
i
|λ(n)
i − λ̄

(n)
i | ≤ ‖L

(n)L(n) −L (n)L (n)‖2 Weyl′s Inequality

≤ ‖L(n)L(n) −L (n)L (n)‖F ‖.‖2 ≤ ‖.‖F

= o
( log n

τ2
nn

1/2

)
Main Theorem 1

= o
(
n−1/2(log n)2

)
Assumption 1

= O(min{δn, δ′n}) Assumption 2

1

2
‖Xn −XnOn‖F ≤

‖L(n)L(n) −L (n)L (n)‖2F
δ2
n

Davis−Kahan

= o
( log n

δnτ2
nn

1/2

)
Main Theorem 1
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Bounding the k-means error

k-means
I Input: Data Points - {x1, . . . , xn} ∈ Rk which are the n

rows of the matrix X ∈ Rn×k

I Output: Centroids - {c1, . . . , ck} ∈ Rk which are the k
unique rows of the matrix C ∈ Rn×k where
Rn×k = {M ∈ Rn×k : M has no more than k unique rows}

I Objective:

min
{m1,...,mk}∈Rk

∑
i

min
g
‖xi −mg‖22 = min

M∈Rn×k
‖X −M‖2F
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Bounding the k-means error - Couple of
Lemmas

Lemma 1
Consider SBM: W = ZBZT ∈ Rn×n for B ∈ Rk×k and
Z ∈ {0, 1}n×k.
1. There exists µ ∈ Rk×k such that Zµ = X ∈ Rn×k whose

columns are eigenvectors of L corresponding to non-zero
eigenvalues.

2. ziµ = zjµ⇔ zi = zj where zi is the ith row of Z.

I Lemma 1 shows that applying k-means on the rows of
X = Zµ can reveal the block structure in the expected
Laplacian L .
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Bounding the k-means error - Couple of
Lemmas

Lemma 2
Define P to be the population of the largest block in Z.

P = max
j=1,...,k

(ZTZ)jj

For the orthonormal matrix O ∈ Rk×k in Theorem 2,

‖ci − ziµO‖2 < 1/
√

2P ⇒ ‖ci − ziµO‖2 < ‖ci − zjµO‖2 for zj 6= zi.

I Lemma 2 lays down the sufficient condition for correct
k-means clustering.

I Motivated by Lemma 2, we define the set of misclustered
nodes as:

M = {i : ‖ci − ziµO‖2 ≥ 1/
√

2P}.
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Bounding the k-means error - Main
Theorem

Theorem 3: Bound on the misclustered nodes
Under the assumptions:
1. (Sparsity) τ2

n > 2/ log n

2. (Eigen-gap) n−1/2(log n)2 = O(λ2
kn

)

The number of misclustered nodes is bounded by

|M | = o
(Pn(log n)2

λ4
kn
τ4
nn

)
almost surely.
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Bounding the k-means error - Main
Theorem Proof

C = argmin
M∈Rn×k

‖X −M‖2F ⇒ ‖X − C‖2 ≤ ‖X − ZµO‖2 (1)

‖C − ZµO‖2 ≤ ‖C −X‖2 + ‖X − ZµO‖2 Triangle Inequality

≤ 2‖X − ZµO‖2 Equation (1)
(2)

In Theorem 2, define Sn = [λ2
kn
/2, 1] and δn = δ′n = λ2

kn
/2. By

assumption, n−1/2(log n)2 = O(λ2
kn

) = O(min(δn, δ
′
n)).
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Bounding the k-means error - Main
Theorem Proof (Contd...)

∴ |M | =
∑
i∈M

1 ≤ 2Pn
∑
i∈M

‖ci − ziµO‖22

≤ 2Pn‖C − ZµO‖2F
≤ 2Pn‖X − ZµO‖2F Equation (2)

= o
(Pn(log n)2

λ4
kn
τ4
nn

)
almost surely.
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Consistency in Special Cases

The four-parameter Stochastic Block Model: SBM(k, s, r, p)

I k blocks each containing s nodes
I Probability of edge between nodes from same cluster is
r ∈ [0, 1] and from different clusters is p+ r ∈ [0, 1]

I B = pIk×k + r11T , λk = 1/(k(r/p) + 1) and Pn = n/k.
Consistency under SBM(k, s, r, p)

I |M | = o(k3(log n)2) almost surely.
I For k = O(n1/4/ log n), |M |n = o(n−1/4) almost surely.
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Hypergraphs

I Collection of sets / Generalization of graphs
I Each edge can connect more than two nodes

Graph 3-uniform Hypergraph
(2-uniform) hypergraph
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Hypergraphs in Computer Vision

Subspace clustering Motion segmentation

Matching / Image Registration

Involves 3-way / 4-way similarities (uniform hypergraph)
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Hypergraph Partitioning Methods

I Partitioning circuits [Schweikert & Kernighan '79]

I Graph approximation for hypergraphs [Hadley '95]

I Spectral hypergraph partitioning [Zien et al. '99]

I hMETIS for VLSI design [Karypis & Kumar '00]

I Uniform hypergraph in databases [Gibson et al. '00]

I Uniform hypergraph in vision [Agarwal et al. '05]

I Tensor based algorithms [Govindu '05; Chen & Lerman '09]

I Learning with non-uniform hypergraph [Zhou et al. '07]

I Higher order learning [Duchenne et al. '11; Rota Bulo & Pellilo
'13; etc.]
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Spectral Uniform Hypergraph Partitioning†

m-uniform hypergraph

Adjacency tensor A Flattened matrix Â

Find dominant left Run k-means
singular vectors on rows

†(Govindu 2005)
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Normalized Hypergraph Cut

Approach: [Zhou, Huang & Schölkopf '07]

I Solve spectral relaxation of minimizing normalized
hypergraph cut

Reduction to graph:
I A,D ∈ Rn×n so that Aij =

∑
e3i,j

1
|e| , Dii = degree(i)

Spectral clustering:
I Normalized Laplacian, L = I −D−1/2AD−1/2

I Compute k leading orthonormal eigenvectors of L
I k-means on normalized rows of eigenvector matrix
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Planted Partition Model
(non-uniform hypergraph)‡

Model:
I Given n nodes, and k (hidden) classes
I Maximum edge cardinality M
I Unknown mth-order tensors B(m) ∈ [0, 1]k×k×...×k

I Unknown sparsity factors αm,n, m = 2, 3, . . . ,M
I Independent edges with label-dependent distribution

Prob(m-edge) = αm,nB
(m)
i1i2...im

‡Ghoshdastidar & Dukkipati (2017), Annals of Statistics
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Consistency of NH-Cut§

Define:
I A = E[A], D = E[D] and L = I −D−1/2AD−1/2

I d = mini E[degree(i)]
I δ = kth eigen-gap of L

Theorem
There exists constant C > 0, such that, if

δ > 0 and d > C
knmax(log n)2

nminδ2

then with probability (1− o(1))

Error(ψ,ψ′) = O

(
knmax log n

δ2d

)
= o(n).

§Ghoshdastidar & Dukkipati (2017), Annals of Statistics
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Concluding Remarks

Spectral approaches offer:

I nice approximations for problems of community detection
in networks with

I theoretical guarantees (Still lot to do!) to establish which
one would indulge in

I results from numerical linear algebra (Davis-Kahan
theorems),

I concentration inequalities from random matrix theory.

Must read:
I Speilman’s lecture notes on spectral graph theory
I Luxburg’s review on spectral clustering

Acknowledgements: Some of the figures in this presentation have been
borrowed from Debarghya.
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