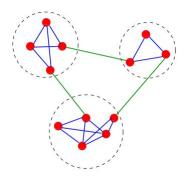
ON STATISTICAL ANALYSIS OF SPECTRAL GRAPH ALGORITHMS FOR COMMUNITY DETECTION IN NETWORKS

Ambedkar Dukkipati

Department of Computer Science & Automation Indian Institute of Science

 $17 \ \mathrm{April} \ 2017$

The Problem - Graph Clustering



- Partition a graph G into k 'clusters'.
- ► Cluster Properties
 - ▶ Many edges within clusters
 - ▶ Few edges between clusters
- Partitioning Objective
 - ▶ Cut across fewest edges possible

- ▶ Graph partitioning is NP-hard
- ▶ Brute force?
 - ► For a small graph with 100 nodes, the number of different partitions exceeds the number of atoms in the universe!
- ► Heuristics?
 - ▶ Optimality, consistency, efficiency ...

Why?

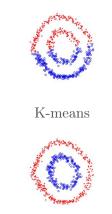
- Nice approximations that give rise to polynomial time algorithms
- ▶ with theoretical guarantees, provided by statistical analysis.

What?

- Underlying objects in a problem can be represented as matrices
- ► Eigenvalues and eigenvectors of these matrices become a clue to the solution.

Spectral Clustering

- ▶ Well studied in literature
- Strong theoretical grounding
 - Spectral Graph Theory
 - Consistency results
- Efficient linear algebraic computations



Spectral Clustering

Ng et al. NIPS, 2001

Graph Coloring

Theorem (Brooks)

Apart from the following cases

1. G is complete

2. *G* has odd cycles

we have $\chi_G \leq d_{max}$

Theorem (Gershgorin Disk)

Assume A is a nonnegative $n \times n$ real matrix. Then all eigenvalues of A lie in the set

$$\bigcup_{i=1}^{n} \left[A_{ii} - \sum_{j \neq i} A_{ij}, \ A_{ii} + \sum_{j \neq i} A_{ij} \right]$$

Lemma

Let A be the adjacency matrix of G = (V, E). Let $\mu_1 \ge \mu_2 \ge \ldots \ge \mu_n$ be the eigenvalues of A. Then $\mu_1 \le d_{max}$.

Proof: By Gershgorin theorem

$$u_{1} \leq \max_{1 \leq i \leq n} \left(A_{ii} + \sum_{j \neq i} A_{ij} \right)$$
$$= \max_{1 \leq i \leq n} \sum_{j=1}^{n} A_{ij}$$
$$= \max_{1 \leq i \leq n} \deg(i) = d_{max}$$

Graph Coloring

The previous result can be proved using Rayleigh's principle.

Theorem (Rayleigh's Principle)

Let A be a nonnegative $n \times n$ real matrix and Let μ_1 be the largest eigenvalues of A then

$$\mu_1 = \max_{v \neq 0} \frac{v^T A v}{v^T v}$$

Note: A is a adjacency matrix of graph G and let μ_1 be the largest eigenvalue of A. Then we already have the following:

•
$$\chi_n \le d_{max}$$

• $\mu_1 \leq d_{max}$

Theorem (Wilf, 1967)

$$\chi_G \leq \lfloor \mu_1 \rfloor + 1$$

Some matrices related to graphs

Let G = (V, E) be a graph. |V| = n and |E| = e.

• Adjacency Matrix: $A \in \mathbb{R}^{n \times n}$ such that

$$A_{ij} = \begin{cases} 0 & \text{if } i = j, \\ 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

- ► Degree Matrix: $D \in \mathbb{R}^{n \times n}$ is diagonal matrix such that $D_{ii} = \deg(i)$
- ▶ Incidence Matrix: $B \in \mathbb{R}^{n \times e}$, where rows indexed by vertices and columns indexed by edges and $B_{ij} = 1$ if vertex *i* lies on edge *j*.
- Laplacian Matrix: $L \in \mathbb{R}^{n \times n}$ is defined as L = D A
- ► Normalized Laplacian: $L \in \mathbb{R}^{n \times n}$ is defined as $L = I D^{-1/2}AD^{-1/2}$

Graph Laplacian

Let G = (V, E) be a graph. |V| = n and |E| = e. Laplacian: $L \in \mathbb{R}^{n \times n}$ such that

$$L_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

Theorem

Let $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ be eigenvalues of L. Then

- **1.** *L* is symmetric and positive semidefinite
- **2.** $\lambda_1 = 0$
- **3.** $\lambda_2 > 0$ iff G is connected
- 4. $\lambda_k = 0$ and $\lambda_{k+1} > 0$ iff G has exactly k-disjoint components

Cuts

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

$$\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$$

► Cut:

$$\operatorname{Cut}(V_1) = |\delta V_1|$$

▶ Expansion Cut

ExpansionCut
$$(V_1, V - V_1) = \frac{|\delta V_1|}{\min\{|V_1|, |V - V_1|\}}$$

▶ Ratio Cut:

RatioCut
$$(V_1, V - V_1) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

Metrics for partitioning

Let G = (V, E) be a graph. |V| = n and |E| = e. Let $V_1 \subset V$. Boundary: The boundary of V_1 is defined as

$$\delta V_1 = \{(i,j) \in E : i \in V_1 \text{ and } j \notin V_1\}$$

► Edge Expansion:

$$\phi_G = \min_{|V_1| \le \frac{|V|}{2}} \frac{|\delta V_1|}{|V_1|}$$

▶ Ratio Cut:

$$\eta_G = \min_{|V_1| \le \frac{|V_1|}{2}} \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V - V_1|}$$

A simple calculation of $x^T L x$

$$\begin{aligned} x^{T}Lx &= x^{T}Dx - x^{T}Ax \\ &= \sum_{i=1}^{n} d_{i}x_{i}^{2} - \sum_{i,j=1}^{n} A_{ij}x_{i}x_{j} \\ &= \sum_{i=1}^{n} d_{i}x_{i}^{2} - \sum_{(i,j)\in E} x_{i}x_{j} + x_{j}x_{i} \\ &= \sum_{(i,j)\in E} (x_{i}^{2} + x_{j}^{2}) - \sum_{(i,j)\in E} x_{i}x_{j} + x_{j}x_{i} \\ &= \sum_{(i,j)\in E} (x_{i} - x_{j})^{2} \end{aligned}$$

Rayleigh Principle or Courant-Fisher Theorem

Theorem

Let M be a symmetric matrix and let $\theta_1 \leq \theta_2 \leq \ldots \leq \theta_n$ be eigenvalues of M. Then

$$\theta_k = \max_{n-k+1 \dim T} \quad \min_{x \in T, x \neq 0} \frac{x^T M x}{x^T x}$$

Theorem

Let L be the Laplacian of a graph G = (V, E). Then

$$\lambda_2 = \min_{x \perp 1} \frac{x^T M x}{x^T x}$$

Cheeger's Inequality

Definition (Cheeger's Constant)

Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

Theorem (Cheeger's Inequality)

Let d_{\max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$\frac{\lambda_2}{2} \le \phi_G \le \sqrt{2\lambda_2 d_{\max}}$$

Note: Look at proofs of Mohar and Spielman

Cheeger's Inequality (Contd...)

Definition (Cheeger's Constant)

Let G = (V, E) be a graph and consider a graph bisection problem. Then

$$\phi_G = \min_{|V_1| \le \frac{n}{2}} \frac{|\delta V_1|}{|V_1|}$$

Theorem (Cheeger's Inequality)

Let d_{\max} denote the maximum degree of G and λ_2 be the second smallest eigenvalue of the Laplacian L of G. Then

$$2\phi_G \le \lambda_2 \le \frac{{\phi_G}^2}{2}$$

Note: Look at proofs of Mohar and Spielman

Graph Bisection

Recall Ratio Cut:

$$\operatorname{RCut}(V_1, V_1^c) = \frac{|\delta V_1|}{|V_1|} + \frac{|\delta V_1|}{|V_1^c|}$$

A simple calculation shall give us this: Define $y \in \mathbb{R}^n$ as

$$y_i = \begin{cases} \sqrt{\frac{|V_1^c|}{|V_1||V|}} & \text{if } i \in V_1, \\ \\ -\sqrt{\frac{|V_1|}{|V_1^c||V|}} & \text{if } i \notin V_1. \end{cases}$$

Then

$$y^T L y = \operatorname{Rcut}(V_1, V_1^c)$$

Let say \mathcal{Y}^* as subset of \mathbb{R}^n denote various y defined as in (*) for various subsets of V_1 of V.

Graph Bisection (contd..)

Objective:

$$\min_{y \in \mathcal{Y}^*} y^T L y$$

Trivial Relaxation:

 $\min_{y\in\mathbb{R}^n}y^TLy$

Not very useful as $1^T L 1 = 0$

Nice Relaxation: Since $y^T 1 = \sum_{i \in V} y_i = 0$, y is orthogonal to 1. Also since $y^T y = \sum_{i \in V} y_i^2 = 1$, y is a unit norm vector. Hence the relaxed problem can be

$$\min_{y \perp 1} \frac{y^T L y}{y^T y}$$

Graph k-way partitioning

Ratio Cut:

$$\operatorname{Rcut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{|V_\ell|}$$

Lets define Y: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{|V_\ell|}} & \text{if } i \in V_\ell, \\ 0 & \text{otherwise.} \end{cases}$$

(**)

Claim: $Y^T Y = I$

Claim: $\operatorname{Rcut}(V_1, \ldots, V_k) = \operatorname{Trace}(Y^T L Y)$

► Objective

$$\min_{Y \in \mathcal{Y}^{**}} \operatorname{Trace}(Y^T L Y)$$

Relaxation

$$\min_{\substack{Y \in \mathbb{R}^n \\ Y^T Y = I}} \operatorname{Trace}(Y^T L Y)$$

Optimal Value

$$Y^{\rm opt} = [v_1 \dots v_k]$$

matrix of k leading orthonormal eigenvectors of L

With Normalized Cuts

Normalized Cut:

$$\operatorname{Ncut}(V_1,\ldots,V_k) = \sum_{\ell=1}^k \frac{|\delta V_\ell|}{\operatorname{Vol}(V_\ell)}$$

where $\operatorname{Vol}(V_{\ell}) = \sum_{i \in V_{\ell}} \deg(i)$

Lets define Y again: Define $y \in \mathbb{R}^{n \times k}$ such that

$$Y_{i\ell} = \begin{cases} \frac{1}{\sqrt{\operatorname{Vol}(V_{\ell})}} & \text{if } i \in V_{\ell}, \\ 0 & \text{otherwise.} \end{cases}$$
(***)

Claim: $Y^T D Y = I$

Claim: Ncut (V_1, \ldots, V_k) = Trace $(Y^T L Y)$

With normalized cuts

► Objective

$$\min_{Y \in \mathcal{Y}^{***}} \operatorname{Trace}(Y^T L Y)$$

Relaxation

$$\min_{\substack{Y \in \mathbb{R}^n \\ Y^T D Y = I}} \operatorname{Trace}(Y^T L Y)$$

▶ By substituting $\tilde{Y} = D^{\frac{1}{2}}Y$ the objective translates to

$$\min_{\substack{\widetilde{Y} \in \mathbb{R}^n \\ \widetilde{Y}^T \widetilde{Y} = I}} \operatorname{Trace}(\widetilde{Y}^T D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \widetilde{Y})$$

Algorithm

- 1. Compute graph Laplacian or normalized graph Laplacian
- **2.** Compute k-leading eigenvectors $Y \in \mathbb{R}^{n \times k}$ of L
- **3.** Normalize rows of Y and say it is \overline{Y}
- **4.** Run *k*-means on rows of \bar{Y}
- **5.** according to this partition V

K-means Step

$$S^* = \underset{\substack{S \in \mathbb{R}^{n \times k} \\ \text{Shas at most } k \text{ distinct rows}}}{\arg \max} ||\bar{Y} - S||_F^2$$

On K-means

Must Look at: Ostrovsky et. al (2012): The Effectiveness of Lloyd-Type Methods for the k-Means Problem

Theorem

W

 γ

Assume that Y satisfies "epsilon-separability", where $\epsilon \leq 0.015$. Then the k-means algorithm of Ostrovsky (2012) returns a solution S^* such that

$$\begin{split} \|Y - S^*\|_F &\leq (1+\epsilon) \min_{\substack{S \in \mathbb{R}^{n \times k} \\ Shas at most k \ distinct \ rows}} \|Y - S\|_F \\ ith \ probability \ (1 - O(\sqrt{\epsilon})) \ in \ time \ O(nrk + rk^3). \ Here, \\ &= \sqrt{\frac{1-\epsilon^2}{1-37\epsilon^2}}. \end{split}$$

Let Z be the true membership matrix

$$Z_{i\ell} = \begin{cases} 1 & \text{if } i \in V_{\ell}, \\ 0 & \text{otherwise.} \end{cases}$$

Let Z^{\prime} be the membership obtained from the algorithm. Then the error is

$$\operatorname{Error} = \min_{\substack{\operatorname{Permutation matrices}\\P \in 0, 1^k \times k}} \frac{1}{2} \|Z - Z'P\|_F^2$$

Let
$$\tilde{B} \in \mathbb{R}^{n \times n}$$
 be a symmetric matrix
 $H \in \mathbb{R}^{n \times n}$ be a symmetric perturbation matrix
and $B = \tilde{B} + H$

Let
$$\lambda_1 \leq \cdots \leq \lambda_n$$
 be the eigenvalues of \tilde{B}
 $\mu_1 \leq \cdots \leq \mu_n$ be the eigenvalues of B
and $\rho_1 \leq \cdots \leq \rho_n$ be the eigenvalues of H

Matrix Perturbation Theory

Tools of the Trade: Weyl's Inequality For $i = 1, \dots, n$ $\lambda_i + \rho_1 \le \mu_i \le \lambda_i + \rho_n$ Corollary: $|\mu_i - \lambda_i| \le \max\{|\rho_1|, |\rho_n|\} = ||B - \tilde{B}||_2$

Tools of the Trade: Davis-Kahan Theorem Let $\delta = \lambda_{k+1} - \lambda_k$. Let \tilde{Y}, Y be the k-leading orthonormal eigenvectors of \tilde{B}, B respectively.

If $\delta > 2 \| \vec{B} - \tilde{B} \|_2$, then

$$\|Y - \tilde{Y}Q\|_F \le \frac{2\sqrt{2k}}{\delta} \|B - \tilde{B}\|_2$$

for some orthonormal $Q \in \mathbb{R}^{k \times k}$.

Perturbation Analysis*

Let G = (V, E) be a graph with Laplacian L. If there exists an "ideal graph" (that has equal sized disjoint components) with Laplacian \tilde{L} such that

$$\|L - \tilde{L}\|_2 < \frac{n}{2k}$$

Then there exists orthonormal $Q, k \times k$ matrix such that

$$||Y - \sqrt{\frac{k}{n}}ZQ||_F \le \frac{2k^{\frac{3}{2}}}{n}||L - \tilde{L}||_2$$

Here

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

and the error of SC is

$$\operatorname{Error} \le 256 \frac{k^2}{n} \|L - \tilde{L}\|_2$$

*(Ng and Jordan, 2002, NIPS)

Random Graph Models

▶ Latent Space Model

- ▶ $z_1, \ldots, z_n \in \mathbb{R}^k$ Latent vectors for each node. IID random variables.
- ▶ The Model: For the random adjacency matrix $W \in \mathbb{R}^{n \times n}$

$$P(W|z_1,\ldots,z_n) = \prod_{i < j} P(W_{ij}|z_i,z_j)$$

▶ $\mathscr{W} = \mathbb{E}(W|Z) \in \mathbb{R}^{n \times n}$ completely parametrises the model. ▶ Stochastic Block Model

▶ Special case of Latent Space Model with

$$\mathscr{W} = ZBZ^T$$

- Membership matrix $Z \in \{0,1\}^{n \times k}$ has one 1 in each row
- Block matrix $B \in [0, 1]^{n \times k}$

- ► Goal: Prove that Spectral Clustering is weakly consistent over Stochastic Block Model
- ► All results will be asymptotic in n, the number of graph nodes
- Series of observed matrices $W^{(n)} \in \{0,1\}^{n \times n}$, $L^{(n)}$ and $D^{(n)}$
- ▶ Series of population matrices $\mathscr{W}^{(n)} \in [0,1]^{n \times n}, \mathscr{L}^{(n)}$ and $\mathscr{D}^{(n)}$

Question: Can we achieve consistency results if we let the the number of clusters grow with the number of nodes? (Rohe, Chatterjee and Yu, Ann. Stats, 2011)

Block Model: Let $Z \in \{0,1\}^{n \times k}$ and it has exactly one 1 in each row and atleast one 1 in each column. Let $B \in [0,1]^{k \times k}$ be a full rank and symmetric matrix, where diagonal elements of Bhas larger values than off diagonal. Then the stochastic block model is $\mathcal{W} = ZBZ^T$. (\mathcal{W} is a population version of W)

Strategy:

- Given Z choose B and define \mathcal{W}
- ► Sample W from W and get Z' from a spectral algorithm. Compute the error by comparing Z' and Z.

Aim: Let $L^{(n)} \in \{0,1\}^{n \times n}$ and $\mathcal{L}^{(n)} \in [0,1]^{n \times n}$ be sequence of observed and population versions of Laplacians. Then show that under stochastic block model difference between eigenvectors of $L^{(n)}$ and $\mathcal{L}^{(n)}$ can bounded.

Result:(Rohe, Chatterjee and Yu, Ann. Stats, 2011) Spectral clustering algorithm is week consistent.

- ► Goal: Prove that Spectral Clustering is weakly consistent over Stochastic Block Model
- ► All results will be asymptotic in n, the number of graph nodes
- Series of observed matrices $W^{(n)} \in \{0,1\}^{n \times n}$, $L^{(n)}$ and $D^{(n)}$
- ▶ Series of population matrices $\mathscr{W}^{(n)} \in [0,1]^{n \times n}, \mathscr{L}^{(n)}$ and $\mathscr{D}^{(n)}$

- **1.** Bound the eigenvalues of $L^{(n)}$ and $\mathscr{L}^{(n)}$
- **2.** Bound the eigenvectors of $L^{(n)}$ and $\mathscr{L}^{(n)}$
- **3.** Bound the *k*-means error

Bird's eye view

1. Bound the Frobenius norm

$$||L^{(n)} - \mathscr{L}^{(n)}||_F = O(\cdots) \text{ almost surely}$$

$$2. \|\cdots\|_2 \leq \|\cdots\|_F$$

3. Weyl's inequality

$$\|L^{(n)} - \mathscr{L}^{(n)}\|_2 < \epsilon \Rightarrow \|\lambda_i^{(n)} - \tilde{\lambda}_i^{(n)}\| \le \epsilon \quad \forall i$$

Bird's eye view

1. Bound the Frobenius norm

$$||L^{(n)} - \mathscr{L}^{(n)}||_F = O(\cdots) \text{ almost surely}$$

Not Possible!

- **2.** $\|\cdots\|_2 \leq \|\cdots\|_F$
- **3.** Weyl's inequality

$$\|L^{(n)} - \mathscr{L}^{(n)}\|_2 < \epsilon \Rightarrow \|\lambda_i^{(n)} - \tilde{\lambda}_i^{(n)}\| \le \epsilon \quad \forall i$$

Bounding Eigenvalues - Obstacle - Example

Counter Example: $W \in \{0, 1\}^{n \times n} \sim Bernoulli(1/2)$

▶ W/n behaves similar to $L = D^{-1/2}WD^{-1/2}$ as entries of D grow linearly with n.

►
$$||W/n - \mathbb{E}(W)/n||_F = \frac{1}{n} \sqrt{\sum_{i,j} (W_{ij} - \mathbb{E}(W_{ij}))^2} = 1/2$$

Diverges!

► However, $||WW/n^2 - \mathbb{E}(WW)/n^2||_F$ converges!

$$\|WW/n^{2} - \mathbb{E}(WW)/n^{2}\|_{F} = \frac{1}{n^{2}} \sqrt{\sum_{i,j} ([WW]_{ij} - \mathbb{E}[WW]_{ij})^{2}}$$
$$= o\left(\frac{\log n}{n^{1/2}}\right)$$

where $[WW]_{ij} \sim Binomial(n, 1/4)$

Bounding Eigenvalues - Obstacle - Resolution

▶ Bound $||L^{(n)}L^{(n)} - \mathscr{L}^{(n)}\mathscr{L}^{(n)}||_F$ instead of $||L^{(n)} - \mathscr{L}^{(n)}||_F$

Lemma

For a real symmetric matrix $M \in \mathbb{R}^{n \times n}$,

- 1. λ^2 is an eigenvalue of $MM \Leftrightarrow \lambda$ or $-\lambda$ is an eigenvalue of M.
- **2.** $M\nu = \lambda\nu \Rightarrow MM\nu = \lambda^2\nu$.
- **3.** $MM\nu = \lambda^2 \nu \Rightarrow \nu$ can be written as linear combination of eigenvectors corresponding to λ or $-\lambda$.

• Therefore, spectrum of L is implied from that of LL.

Bounding Eigenvalues - Main Theorem

Theorem 1: Convergence in Frobenius Norm Define

$$\tau_n = \min_i \mathscr{D}_{ii}^{(n)} / n$$

If there exists N > 0 such that $\tau_n^2 \log n > 2 \ \forall \ n > N$, then

$$\|L^{(n)}L^{(n)} - \mathscr{L}^{(n)}\mathscr{L}^{(n)}\|_F = o\left(\frac{\log n}{\tau_n^2 n^{1/2}}\right) almost \ surrely.$$

Bounding Eigenvalues - Main Theorem Proof

Tools of the Trade: Borel Cantelli Lemma

Let E_1, \ldots, E_n be a sequence of events in a probability space.

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty \Rightarrow \mathbb{P}(\bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_k) = 0$$

Take E_n to be the event where $\frac{\|L^{(n)}L^{(n)}-\mathscr{L}^{(n)}\mathscr{L}^{(n)}\|_F}{c\log n/(\tau^2 n^{1/2}\epsilon)} \ge \epsilon$.

$$\therefore \|L^{(n)}L^{(n)} - \mathscr{L}^{(n)}\mathscr{L}^{(n)}\|_F = o\left(\frac{\log n}{\tau_n^2 n^{1/2}}\right) almost \ surrely.$$

Proof Strategy:

- ▶ $L = D^{-1/2}WD^{-1/2}$. D and W are not independent which means the entries of L are not independent.
 - Independence is an essential ingredient for using concentration of measure inequalities!
- \blacktriangleright Introduce an intermediate Laplacian \tilde{L}
 - ▶ $L = D^{-1/2}WD^{-1/2}$
 - $\blacktriangleright \quad \tilde{L} = \mathscr{D}^{-1/2} W \mathscr{D}^{-1/2}$
 - $\blacktriangleright \ \mathscr{L} = \mathscr{D}^{-1/2} \mathscr{W} \mathscr{D}^{-1/2}$

 \blacktriangleright Introduce two sets Γ and Λ

- ► Γ constrains the matrix D and helps in bounding $\|LL \tilde{L}\tilde{L}\|_F$
- Λ constrains $W \mathscr{D}^{-1} W$ and helps in bounding $\|\tilde{L}\tilde{L} \mathscr{L}\mathscr{L}\|_F$
- Notation: $\mathbb{P}_{\Gamma\Lambda}(B) = \mathbb{P}(B \cap (\Gamma \cap \Lambda))$

$$\begin{split} \text{Define } a &= \frac{32\sqrt{2}\log n}{\tau^2 n^{1/2}} \\ \mathbb{P}\left(\|LL - \mathscr{L}\mathscr{L}\|_F \ge a\right) \le \mathbb{P}_{\Gamma\Lambda}\left(\|LL - \mathscr{L}\mathscr{L}\|_F \ge a\right) + \mathbb{P}\left((\Gamma \cap \Lambda)^c\right) \\ &\leq \mathbb{P}_{\Gamma\Lambda}\left(\sum_{i \neq j} [LL - \mathscr{L}\mathscr{L}]_{ij}^2 \ge a^2/2\right) - term \ 1 \\ &+ \mathbb{P}_{\Gamma\Lambda}\left(\sum_i [LL - \mathscr{L}\mathscr{L}]_{ii}^2 \ge a^2/2\right) - term \ 2 \\ &+ \mathbb{P}\left((\Gamma \cap \Lambda)^c\right) - term \ 3 \end{split}$$

$$\begin{split} \mathbb{P}_{\Gamma\Lambda}\Big(\sum_{i\neq j} [LL - \mathscr{L}\mathscr{L}]_{ij}^2 \ge a^2/2\Big) - term \ \mathbf{1} \\ &\leq \sum_{i\neq j} \Big[\mathbb{P}_{\Gamma\Lambda}\Big(|LL - \tilde{L}\tilde{L}|_{ij} \ge \frac{a}{\sqrt{8}n}\Big) + \mathbb{P}_{\Gamma\Lambda}\Big(|\tilde{L}\tilde{L} - \mathscr{L}\mathscr{L}|_{ij} \ge \frac{a}{\sqrt{8}n}\Big) \Big] \\ &\underbrace{|\tilde{L}\tilde{L} - \mathscr{L}\mathscr{L}|_{ij}}_{bound \ by \ \Lambda} = \frac{1}{(\mathscr{D}_{ii}\mathscr{D}_{jj})^{1/2}} \Big| \sum_k (W_{ik}W_{jk} - \mathscr{W}_{ik}\mathscr{W}_{jk})/\mathscr{D}_{kk} \Big| \\ &\leq \frac{1}{n^2\tau} \Big| \sum_k (W_{ik}W_{jk} - \mathscr{W}_{ik}\mathscr{W}_{jk})/\mathscr{D}_{kk} \Big| \end{split}$$

$$\underbrace{|LL - \tilde{L}\tilde{L}|_{ij}}_{bound by \Gamma} \leq \sum_{k} \Big| \frac{1}{D_{kk} (D_{ii}D_{jj})^{1/2}} - \frac{1}{\mathscr{D}_{kk} (\mathscr{D}_{ii}\mathscr{D}_{jj})^{1/2}}$$

Define

$$\Lambda = \bigcap_{i,j} \left\{ \left| \sum_{k} (W_{ik} W_{jk} - \mathscr{W}_{ik} \mathscr{W}_{jk}) / \mathscr{D}_{kk} < n^{1/2} \log n \right| \right\}$$

$$\Gamma = \bigcap_{i,j,k} \left\{ \frac{1}{D_{kk} (D_{ii} D_{jj})^{1/2}} \in \frac{[1 - n^{-1/2} \log n, 1 + n^{-1/2} \log n]}{\mathscr{D}_{kk} (\mathscr{D}_{ii} \mathscr{D}_{jj})^{1/2}} \right\}$$

- With Λ and Γ , term 1 = 0
- Similarly, we can show that $term \ 2 = 0$
- ▶ All that is remaining is to bound *term* 3

Tools of the Trade: Hoeffding's Inequality

Let X_1, \ldots, X_n be i.i.d. random variables with bounds $X_i \in [a_i, b_i]$. Let $S_n = \sum_{i=1}^n X_i$. Then

$$\mathbb{P}\left(\left|S_n - \mathbb{E}[S_n]\right| > t\right) \le 2e^{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}}$$

- $D_{ii} \in [0, n] \forall i$ and are i.i.d.
- $W_{ik}W_{jk}/\mathscr{D}_{kk} \in [0, 1/\tau] \ \forall \ k.$

Applying Hoeffding's inequality, we get the required exponential bound on $\mathbb{P}((\Gamma \cap \Lambda)^c)$.

- The next step is to bound the eigenvectors of L and \mathscr{L} .
- ► Notation:
 - ► For symmetric matrix M, $\lambda(M)$ is the set of eigenvalues of M.
 - For a real interval $S \subset \mathbb{R}$, $\lambda_S(M) = \{\lambda(M) \cap S\}$

Tools of the Trade: Davis-Kahan Theorem

Let $S \subset \mathbb{R}$ be an interval. Denote \mathscr{X} as an orthonormal matrix whose column space is the eigenspace of \mathscr{LL} corresponding to the eigenvalues in $\lambda_S(\mathscr{LL})$. Denote by X the analogous matrix for *LL*. Define the distance between S and the spectrum of \mathscr{LL} outside of S as

$$\delta = \min\{|\ell - s|; \ell \in \lambda(\mathscr{LL}), \ell \notin S, s \in S\}$$

If ${\mathscr X}$ and X are of the same dimension, then there is an orthonormal matrix O such that

$$\frac{1}{2} \|X - \mathscr{X}O\|_F^2 \le \frac{\|LL - \mathscr{L}\mathscr{L}\|_F^2}{\delta^2}$$

Tools of the Trade: Weyl's Inequality

Define $\bar{\lambda}_1 \geq \ldots \geq \bar{\lambda}_n$ to be the elements of $\lambda(\mathscr{LL})$ and $\lambda_1 \geq \ldots \geq \lambda_n$ to be the elements of $\lambda(LL)$. Then the eigenvalues of \mathscr{LL} and LL converge in the following sense.

$$\max_{i} |\lambda_{i} - \bar{\lambda}_{i}| \leq \|LL - \mathscr{L}\mathscr{L}\|_{2}$$

- ▶ Weyl's inequality bounds the eigenvalues of \mathscr{LL} and LL.
- \blacktriangleright Davis-Kahan theory bounds the eigenvectors of \mathscr{LL} and LL.

- ▶ and then convergence of eigenvalues and eigenvectors...
- ▶ and then K-means...
- ▶ and then then result.

Theorem 2: Convergence of Eigenvalues and Eigenvectors

Define sequences of intervals $S_n \in \mathbb{R}$ and $S'_n = \{\ell : \ell^2 \in S_n\}$. Define

$$\delta_n = \inf\{|\ell - s|; \ell \in \lambda(\mathscr{L}^{(n)}\mathscr{L}^{(n)}), \ell \notin S_n, s \in S_n\}$$
$$\delta'_n = \inf\{|\ell - s|; \ell \in \lambda_{S_n}(\mathscr{L}^{(n)}\mathscr{L}^{(n)}), s \notin S_n\}$$

Let k_n be the size of $\lambda_{S'_n}(L^{(n)})$ and \mathscr{K}_n be the size of $\lambda_{S'_n}(\mathscr{L}^{(n)})$. Let $X_n \in \mathbb{R}^{n \times k_n}$ and $\mathscr{K}_n \in \mathbb{R}^{n \times \mathscr{K}_n}$ be the matrices whose orthonormal columns are eigenvectors corresponding to eigenvalues in $\lambda_{S'_n}(L^{(n)})$ and $\lambda_{S'_n}(\mathscr{L}^{(n)})$ respectively. Theorem 2: Convergence of Eigenvalues and Eigenvectors (Contd...)

Assumptions:

1. (Sparsity) $\tau_n^2 > 2/\log n$ 2. (Eigen-gap) $n^{-1/2}(\log n)^2 = O(\min\{\delta_n, \delta_n'\})$ Then eventually, $k_n = \mathscr{K}_n$. Afterward, $\frac{1}{2} \|X_n - \mathscr{K}_n O_n\|_F = o\left(\frac{\log n}{\delta_n \tau_n^2 n^{1/2}}\right)$

Bounding Eigenvectors - Main Theorem Proof

$$\begin{split} \max_{i} |\lambda_{i}^{(n)} - \bar{\lambda}_{i}^{(n)}| &\leq \|L^{(n)}L^{(n)} - \mathscr{L}^{(n)}\mathscr{L}^{(n)}\|_{2} & Weyl's \ Inequality \\ &\leq \|L^{(n)}L^{(n)} - \mathscr{L}^{(n)}\mathscr{L}^{(n)}\|_{F} & \|.\|_{2} \leq \|.\|_{F} \\ &= o\Big(\frac{\log n}{\tau_{n}^{2}n^{1/2}}\Big) & Main \ Theorem \ 1 \\ &= o\Big(n^{-1/2}(\log n)^{2}\Big) & Assumption \ 1 \\ &= O(\min\{\delta_{n},\delta_{n}'\}) & Assumption \ 2 \\ \\ \frac{1}{2}\|X_{n} - \mathscr{X}_{n}O_{n}\|_{F} \leq \frac{\|L^{(n)}L^{(n)} - \mathscr{L}^{(n)}\mathscr{L}^{(n)}\|_{F}^{2}}{\delta_{n}^{2}} & Davis - Kahar \\ &= o\Big(\frac{\log n}{\delta_{n}\tau_{n}^{2}n^{1/2}}\Big) & Main \ Theorem \ 1 \\ \end{split}$$

k-means

- ▶ Input: Data Points $\{x_1, ..., x_n\} \in \mathbb{R}^k$ which are the *n* rows of the matrix $X \in \mathbb{R}^{n \times k}$
- Output: Centroids {c₁,..., c_k} ∈ ℝ^k which are the k unique rows of the matrix C ∈ ℛ^{n×k} where
 ℛ^{n×k} = {M ∈ ℝ^{n×k} : M has no more than k unique rows}
- Objective:

$$\min_{\{m_1,\dots,m_k\}\in\mathbb{R}^k} \sum_i \min_g \|x_i - m_g\|_2^2 = \min_{M\in\mathscr{R}^{n\times k}} \|X - M\|_F^2$$

Bounding the *k*-means error - Couple of Lemmas

Lemma 1

Consider SBM: $W = ZBZ^T \in \mathbb{R}^{n \times n}$ for $B \in \mathbb{R}^{k \times k}$ and $Z \in \{0, 1\}^{n \times k}$.

1. There exists $\mu \in \mathbb{R}^{k \times k}$ such that $Z\mu = \mathscr{X} \in \mathbb{R}^{n \times k}$ whose columns are eigenvectors of \mathscr{L} corresponding to non-zero eigenvalues.

2.
$$z_i \mu = z_j \mu \Leftrightarrow z_i = z_j$$
 where z_i is the *i*th row of Z.

• Lemma 1 shows that applying k-means on the rows of $\mathscr{X} = Z\mu$ can reveal the block structure in the expected Laplacian \mathscr{L} .

Bounding the *k*-means error - Couple of Lemmas

Lemma 2

Define P to be the population of the largest block in Z.

$$P = \max_{j=1,\dots,k} (Z^T Z)_{jj}$$

For the orthonormal matrix $O \in \mathbb{R}^{k \times k}$ in Theorem 2,

$$||c_i - z_i \mu O||_2 < 1/\sqrt{2P} \Rightarrow ||c_i - z_i \mu O||_2 < ||c_i - z_j \mu O||_2 \text{ for } z_j \neq z_i.$$

- Lemma 2 lays down the sufficient condition for correct k-means clustering.
- ▶ Motivated by Lemma 2, we define the set of misclustered nodes as:

$$\mathcal{M} = \{i : \|c_i - z_i \mu O\|_2 \ge 1/\sqrt{2P}\}.$$

Bounding the k-means error - Main Theorem

Theorem 3: Bound on the misclustered nodes Under the assumptions:

- 1. (Sparsity) $\tau_n^2 > 2/\log n$
- **2.** (Eigen-gap) $n^{-1/2} (\log n)^2 = O(\lambda_{k_n}^2)$

The number of misclustered nodes is bounded by

$$|\mathscr{M}| = o\Big(\frac{P_n(\log n)^2}{\lambda_{k_n}^4 \tau_n^4 n}\Big) almost \ surely.$$

Bounding the *k*-means error - Main Theorem Proof

$$C = \underset{M \in \mathscr{R}^{n \times k}}{\arg \min} \|X - M\|_F^2 \Rightarrow \|X - C\|_2 \le \|X - Z\mu O\|_2$$
(1)

$$\begin{aligned} \|C - Z\mu O\|_2 &\leq \|C - X\|_2 + \|X - Z\mu O\|_2 \quad Triangle \ Inequality \\ &\leq 2\|X - Z\mu O\|_2 \quad Equation \ (1) \\ &(2) \end{aligned}$$

In Theorem 2, define $S_n = [\lambda_{k_n}^2/2, 1]$ and $\delta_n = \delta'_n = \lambda_{k_n}^2/2$. By assumption, $n^{-1/2}(\log n)^2 = O(\lambda_{k_n}^2) = O(\min(\delta_n, \delta'_n))$.

Bounding the *k*-means error - Main Theorem Proof (Contd...)

$$\therefore |\mathcal{M}| = \sum_{i \in \mathcal{M}} 1 \le 2P_n \sum_{i \in \mathcal{M}} ||c_i - z_i \mu O||_2^2$$

$$\le 2P_n ||C - Z\mu O||_F^2$$

$$\le 2P_n ||X - Z\mu O||_F^2$$

$$= o\Big(\frac{P_n (\log n)^2}{\lambda_{k_n}^4 \tau_n^4 n}\Big) \text{ almost surely.} \quad \Box$$

The four-parameter Stochastic Block Model: SBM(k, s, r, p)

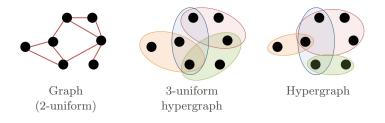
- \blacktriangleright k blocks each containing s nodes
- ▶ Probability of edge between nodes from same cluster is $r \in [0, 1]$ and from different clusters is $p + r \in [0, 1]$

► $B = p \mathbb{I}_{k \times k} + r \mathbb{1} \mathbb{1}^T$, $\lambda_k = 1/(k(r/p) + 1)$ and $P_n = n/k$. Consistency under SBM(k, s, r, p)

•
$$|\mathcal{M}| = o(k^3 (\log n)^2)$$
 almost surely.

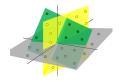
• For $k = O(n^{1/4}/\log n)$, $\frac{|\mathcal{M}|}{n} = o(n^{-1/4})$ almost surely.

- ▶ Collection of sets / Generalization of graphs
- ▶ Each edge can connect more than two nodes



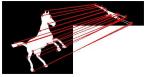
Hypergraphs in Computer Vision

Subspace clustering



Motion segmentation

Matching / Image Registration



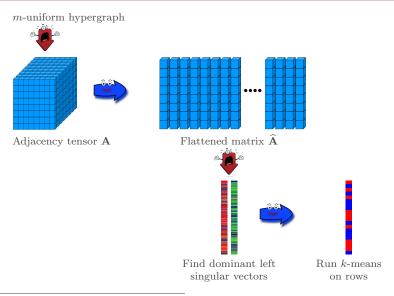
Involves 3-way / 4-way similarities (uniform hypergraph)

Hypergraph Partitioning Methods

	Partitioning circuits	[Schweikert & Kernighan '	79]
	Graph approximation for hype	rgraphs [Hadley '	95]
	Spectral hypergraph partitioni	ng [Zien et al. '	99]
	hMETIS for VLSI design	[Karypis & Kumar '	00]
•	Uniform hypergraph in databa	ses [Gibson et al. '	00]
	Uniform hypergraph in vision	[Agarwal et al. '	05]
	Tensor based algorithms	[Govindu '05; Chen & Lerman '	09]

- ► Learning with non-uniform hypergraph [Zhou et al. '07]
- ▶ Higher order learning [Duchenne et al. '11; Rota Bulo & Pellilo '13; etc.]

Spectral Uniform Hypergraph Partitioning^{\dagger}



[†](Govindu 2005)

Normalized Hypergraph Cut

Approach:

[Zhou, Huang & Schölkopf '07]

 Solve spectral relaxation of minimizing normalized hypergraph cut

Reduction to graph:

•
$$A, D \in \mathbb{R}^{n \times n}$$
 so that $A_{ij} = \sum_{e \ni i, j} \frac{1}{|e|}, D_{ii} = \text{degree}(i)$

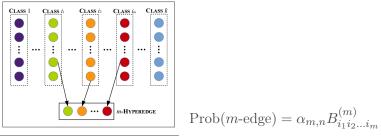
Spectral clustering:

- ▶ Normalized Laplacian, $L = I D^{-1/2}AD^{-1/2}$
- Compute k leading orthonormal eigenvectors of L
- \blacktriangleright k-means on normalized rows of eigenvector matrix

Planted Partition Model $(non-uniform hypergraph)^{\ddagger}$

Model:

- Given n nodes, and k (hidden) classes
- \blacktriangleright Maximum edge cardinality M
- ▶ Unknown m^{th} -order tensors $B^{(m)} \in [0, 1]^{k \times k \times ... \times k}$
- Unknown sparsity factors $\alpha_{m,n}$, $m = 2, 3, \ldots, M$
- ▶ Independent edges with label-dependent distribution



 $^{\ddagger}\mathrm{Ghoshdastidar}$ & Dukkipati (2017), Annals of Statistics

Consistency of NH-Cut[§]

Define:

•
$$\mathcal{A} = \mathsf{E}[A], \mathcal{D} = \mathsf{E}[D] \text{ and } \mathcal{L} = I - \mathcal{D}^{-1/2} \mathcal{A} \mathcal{D}^{-1/2}$$

- $\blacktriangleright \ d = \min_i \mathsf{E}[\operatorname{degree}(i)]$
- $\delta = k^{th}$ eigen-gap of \mathcal{L}

Theorem

There exists constant C > 0, such that, if

$$\delta > 0$$
 and $d > C \frac{k n_{\max} (\log n)^2}{n_{\min} \delta^2}$

then with probability (1 - o(1))

$$\operatorname{Error}(\psi, \psi') = O\left(\frac{kn_{\max}\log n}{\delta^2 d}\right) = o(n).$$

[§]Ghoshdastidar & Dukkipati (2017), Annals of Statistics

Spectral approaches offer:

- nice approximations for problems of community detection in networks with
- ▶ theoretical guarantees (Still lot to do!) to establish which one would indulge in
 - ▶ results from numerical linear algebra (Davis-Kahan theorems),
 - ▶ concentration inequalities from random matrix theory.

Must read:

- ▶ Speilman's lecture notes on spectral graph theory
- ▶ Luxburg's review on spectral clustering

Acknowledgements: Some of the figures in this presentation have been borrowed from Debarghya.