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The Problem - Graph Clustering

» Partition a graph G into k
‘clusters’.

» Cluster Properties

» Many edges within clusters
» Few edges between clusters

» Partitioning Objective
» Cut across fewest edges possible




Why is this hard?

» Graph partitioning is NP-hard
» Brute force?

» For a small graph with 100 nodes, the number of different
partitions exceeds the number of atoms in the universe!

» Heuristics?
» Optimality, consistency, efficiency ...



Spectral...Why and What?

Why?
» Nice approximations that give rise to polynomial time
algorithms
» with theoretical guarantees, provided by statistical analysis.
What?

» Underlying objects in a problem can be represented as
matrices

» Eigenvalues and eigenvectors of these matrices become a
clue to the solution.
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Ng et al. NIPS, 2001



Graph Coloring

Theorem (Brooks)

Apart from the following cases
1. G is complete
2. G has odd cycles

we have xg < dmaz

Theorem (Gershgorin Disk)

Assume A is a nonnegative n X n real matrix. Then all
eigenvalues of A lie in the set

Az — Z Ay, A+ Z Ay

JF JF
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Graph Coloring

Lemma

Let A be the adjacency matriz of G = (V, E). Let
U1 > g > ... >y be the eigenvalues of A. Then 1 < dmaz-

Proof: By Gershgorin theorem

p1 < max Aii + E Ajj
J#i
n
= max Aij
1<i<n

= max deg(7) = dpmaz
lgig’n g( ) max



Graph Coloring

The previous result can be proved using Rayleigh’s principle.
Theorem (Rayleigh’s Principle)

Let A be a nonnegative n x n real matrix and Let p; be the
largest eigenvalues of A then

vl Av
1 = Imax
H v20 vlv

Note: A is a adjacency matrix of graph G and let u; be the
largest eigenvalue of A. Then we already have the following:

> Xn < dma:r
> S dm(m;

Theorem (Wilf, 1967)

xe < [p1] +1
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Some matrices related to graphs

Let G = (V, E) be a graph. |V| =n and |E| =e.
» Adjacency Matrix: A € R™*" such that

0 if i=j
Ai]’ = 1 if (Z,j) €k,

0 if (i,j) ¢ E.
» Degree Matrix: D € R™*" is diagonal matrix such that
Dj; = deg(i)
» Incidence Matrix: B € R"*¢ where rows indexed by
vertices and columns indexed by edges and B;; = 1 if vertex
7 lies on edge j.
» Laplacian Matrix: L € R"*" is defined as L =D — A

» Normalized Laplacian: L € R™*" is defined as
L=1-D12AD™1/2



Graph Laplacian

Let G = (V, E) be a graph. |V| =n and |E| = e. Laplacian:
L € R™™ such that

di it i=j
Lij = —1 if (L,J) ek,
0 it (i,j)¢E.

Theorem
Let A1 < o < ... < A\, be eigenvalues of L. Then
1. L is symmetric and positive semidefinite
2. A1 =0
3. Xy > 0 iff G is connected
4. A\ =0 and Ay > 0 iff G has exactly k-disjoint

components
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Cuts

Let G = (V,E) be a graph. |V| =n and |E| =e. Let V1 C V.
Boundary: The boundary of V; is defined as

5V1:{(i,j)€E: 1eVy andjgéVl}
» Cut:
Cut(Vl) = |(5V1’
» Expansion Cut

0V1]
min{| V3|, [V = Va[}

ExpansionCut(Vy,V — Vi) =

» Ratio Cut:

0% 3%
| 1|+ |oV1]

RatioCut(V1,V — V;) = it v o
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Metrics for partitioning

Let G = (V,E) be a graph. |V|=n and |E| =e. Let V1 C V.
Boundary: The boundary of V; is defined as

5V1:{(z',j)eE: 1e€WN andjgéVl}

» Edge Expansion:

¢c = min oVA|
|V1|S% 14
» Ratio Cut:
. o] A%
NG = min

<yl il [V =W

12



A simple calculation of 2’ Lx

i=1 (i,J)EE

= Z (z2 + x?) - Z Tixj + X
(i.j)ek (i,)EE

= Z (@i — x])2
(i,.)eE
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Rayleigh Principle or Courant-Fisher
Theorem

Theorem

Let M be a symmetric matrix and let 61 < 0y < ... <6, be
eigenvalues of M. Then

T Mz
0, = max min =
n—k+1dim7T z€Tx#0 T Xx

Theorem
Let L be the Laplacian of a graph G = (V, E). Then

2T Mz
Ay = min =
zll T X

14



Cheeger’s Inequality

Definition (Cheeger’s Constant)

Let G = (V, E) be a graph and consider a graph bisection
problem. Then
¢G = min oV |
i<z VAl

Theorem (Cheeger’s Inequality)

Let dyax denote the mazimum degree of G and Ao be the second
smallest eigenvalue of the Laplacian L of G. Then

% < ¢G < V 2>\2dmax

Note: Look at proofs of Mohar and Spielman
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Cheeger’s Inequality (Contd...)

Definition (Cheeger’s Constant)

Let G = (V, E) be a graph and consider a graph bisection
problem. Then

Theorem (Cheeger’s Inequality)

Let dmax denote the mazimum degree of G and Ao be the second
smallest eigenvalue of the Laplacian L of G. Then

bc*

2¢G§>\2§T

Note: Look at proofs of Mohar and Spielman
16



Graph Bisection

Recall Ratio Cut:

Ruamha
Vil vyl

RCut(Vi, V{)

A simple calculation shall give us this:
Define y € R™ as

% . .
w0 iV
Yi =
V1] . .
Vv i

Then
y! Ly = Reut(Vy, V)
Let say V* as subset of R™ denote various y defined as in (*) for

various subsets of V7 of V.
17



Graph Bisection (contd..)

Objective:

b
Trivial Relaxation:

min y" Ly

Not very useful as 17L1 = 0

Nice Relaxation:

Since y'1 = > icy ¥i = 0, y is orthogonal to 1. Also since

yly = Y icv yf =1, y is a unit norm vector. Hence the relaxed
problem can be

18



Graph k-way partitioning

Ratio Cut:

k
0V2|
Reut(Vy, ..., Vg) = Z —_—
= vl

Lets define Y: Define y € R"** such that

L if ieV,
VIvil '
Yrif — ¢ (**)

0 otherwise.

Claim: Y'Y =1
Claim: Reut(V7,...,V)) = Trace(YTLY)

19



Graph k-way partitioning

» Objective
min Trace(YTLY)
Yey**

» Relaxation
min Trace(YTLY)

YGR"
YTy=r1

» Optimal Value
YOpt - [’Ul e 'I}k]

matrix of k leading orthonormal eigenvectors of L

20



With Normalized Cuts

Normalized Cut:

k

5V

Neut(Vy,...,V; :Z | E‘
/=1

where Vol(Vy) = >y, deg(i)
Lets define Y again: Define y € R™** such that

1 . .
A if eV,

Yie =

o

otherwise.

Claim: YT'DY =1

Claim: Ncut(V7,...,V,) = Trace(YTLY)

21
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With normalized cuts

» Objective

min Trace(YTLY)
Yey***

> Relaxation
min Trace(YTLY)

Y eR®
YT py=r1

» By substituting Y = D2Y the objective translates to

min Trace(YT D 2LD 2Y)
YeR?
yTy=r1

22



Spectral Clustering Algorithm

Algorithm

1.
2.
3.
4.
5.

Compute graph Laplacian or normalized graph Laplacian
Compute k-leading eigenvectors Y € R™* of L
Normalize rows of Y and say it is Y’

Run k-means on rows of Y

according to this partition V'

K-means Step

S* = arg max Y — S||%
SeRnxk

Shas at most k distinct rows

23



On K-means

Must Look at: Ostrovsky et. al (2012): The Effectiveness of
Lloyd-Type Methods for the k-Means Problem
Theorem

Assume that Y satisfies “epsilon-separability”, where e < 0.015.
Then the k-means algorithm of Ostrovsky (2012) returns a
solution S* such that

Y -S| < (1+ i Y-S
Y-Sl <+9  min Y-Sl

Shas at most k distinct rows

with probability (1 — O(y/€)) in time O(nrk + rk®). Here,
_ 1—¢?
TV T e

24



Error

Let Z be the true membership matrix

1 if eV,
Ziyg =
0 otherwise.

Let Z' be the membership obtained from the algorithm.
Then the error is

. 1 /
Error = min ~||1Z - Z P|%
Permutation matrices 2
Pe0,1kXk

25



Perturbation Analysis

Let B eR™"™ be a symmetric matrix

H € R™™ ™  be a symmetric perturbation matrix
and B=B+H

Let A\ <--- <\, be the eigenvalues of B
w1 < -+ < pu, Dbe the eigenvalues of B
and p; <---<p, be the eigenvalues of H

26



Matrix Perturbation Theory

Tools of the Trade: Weyl’s Inequality

Fori=1,---.,n
Ai+p1 S <N+ pp

Corollary: |p; — As| < max{|p1], [pul} = | B — Bl

Tools of the Trade: Davis-Kahan Theorem

Let 6 = )‘k—i-l )\k
Let Y, Y be the k-leading orthonormal eigenvectors of B, B

respectively.
If § > 2||B — B||2, then

2v/2k
1Y — YQHF<—HB B2

for some orthonormal Q € RF**.

27



Perturbation Analysis*

Let G = (V, E) be a graph with Laplacian L. If there exists an
“ideal graph” (that has equal sized disjoint components) with
Laplacian L such that

L-1L
I = Ell2 < 5

Then there exists orthonormal @, k x k£ matrix such that

2k2
- Ezae < 2 - gy,

[ Azl
220 [alls

Here

| Allz =
and the error of SC is

k2 ~
Error < 256— || L — L||2
n

*(Ng and Jordan, 2002, NIPS)
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Random Graph Models

» Latent Space Model

> 21,...,2, € RF - Latent vectors for each node. IID random
variables.
» The Model: For the random adjacency matrix W € R™*"

P(W|21, .. .,Zn) = HP(Wij|Zi7Zj)

i<j

» W =E(W|Z) € R"*" completely parametrises the model.
» Stochastic Block Model
» Special case of Latent Space Model with

W = ZBZ"

» Membership matrix Z € {0,1}"** has one 1 in each row
» Block matrix B € [0, 1]"**

29



The Setup

» Goal: Prove that Spectral Clustering is weakly consistent
over Stochastic Block Model

» All results will be asymptotic in n, the number of graph
nodes

» Series of observed matrices W™ € {0,1}™*", L") and D™

» Series of population matrices # ™ € [0,1]"*", 2™ and
()

30



Stochastic Blockmodel Analysis

Question: Can we achieve consistency results if we let the the
number of clusters grow with the number of nodes? (Rohe,
Chatterjee and Yu, Ann. Stats, 2011)

Block Model: Let Z € {0,1}™** and it has exactly one 1 in
each row and atleast one 1 in each column. Let B € [0, 1]¥** be
a full rank and symmetric matrix, where diagonal elements of B
has larger values than off diagonal. Then the stochastic block
model is W = ZBZT. (W is a population version of W)

Strategy:
» Given Z choose B and define W

» Sample W from W and get Z’ from a spectral algorithm.
Compute the error by comparing Z’ and Z.

31



Stochastic Blockmodel Analysis

Aim: Let Lt € {0,1}™" and £™ € [0,1]"*" be sequence of
observed and population versions of Laplacians. Then show that
under stochastic block model difference between eigenvectors of
L™ and £ can bounded.

Result:(Rohe, Chatterjee and Yu, Ann. Stats, 2011) Spectral
clustering algorithm is week consistent.

32



The Setup

» Goal: Prove that Spectral Clustering is weakly consistent
over Stochastic Block Model

» All results will be asymptotic in n, the number of graph
nodes

» Series of observed matrices W™ € {0,1}™*", L") and D™

» Series of population matrices # ™ € [0,1]"*", 2™ and
()
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Proof Sketch

1. Bound the eigenvalues of L™ and £
2. Bound the eigenvectors of L™ and 2"

3. Bound the k-means error

34



Bounding Eigenvalues

Bird’s eye view

1. Bound the Frobenius norm
|ILM) — 2M)||p = O(-- ) almost surely

2. -l < fl-lle
3. Weyl’s inequality

ILM — 2™, < e= A =3 <€ vi

35



Bounding Eigenvalues - Obstacle

Bird’s eye view

1. Bound the Frobenius norm
|1L™ — 2™ p = O(---) almost surely

Not Possible!

2. -l < e
3. Weyl’s inequality

IL™ — 2™y < e =A™ -3 < e w

36



Bounding Eigenvalues - Obstacle - Example

Counter Example: W € {0,1}"*" ~ Bernoulli(1/2)
» W/n behaves similar to L = D~'/2W D~1/2 as entries of D
grow linearly with n.
> [W/n = BOW)/nllp = & /5 (Wi — B(Wij))? = 1/2
Diverges!
» However, |[WW/n? — E(WW)/n?||r converges!

”WW/M—E(WW)/nQHF—* Z [WW1i; — E[WW];;)?

B logn
- nl/2

where [WW];; ~ Binomial(n,1/4)

37



Bounding Eigenvalues - Obstacle -
Resolution

» Bound ||[LML™ — 2 20| instead of |L™ — 20| g

Lemma
For a real symmetric matrix M € R™*",

1. A? is an eigenvalue of MM < X or —)\ is an eigenvalue of
M.

2. Mv=\v= MMv = \v.

3. MMv = \?v = v can be written as linear combination of
eigenvectors corresponding to A or —\.

» Therefore, spectrum of L is implied from that of LL.
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Bounding Eigenvalues - Main Theorem

Theorem 1: Convergence in Frobenius Norm

Define
Tp = min Qi(in)/n
(2
If there exists N > 0 such that 72logn > 2V n > N, then

logn
o2

| LM L™ — () )| = o( ) almost surely.

min expected degree
max possible degree

> 7, is a measure of sparsity of the graph.

> Th =

39



Bounding Eigenvalues - Main Theorem
Proof

Tools of the Trade: Borel Cantelli Lemma

Let Eq,..., E, be a sequence of events in a probability space.
o0
> P(En) < 0o = P(N5; U, Ex) =0
n=1

(n) 1,(n) _ p(n) op(n)
Take E, to be the event where Iz L % 1{ e > ¢
clogn/(m2nl/2¢)
logn

L0 ) gt — 0<T%n1/2

> almost surely.

40



Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

Proof Strategy:
» L=D Y2WD /2 D and W are not independent which
means the entries of L are not independent.
» Independence is an essential ingredient for using
concentration of measure inequalities!

» Introduce an intermediate Laplacian L
> [ — D*l/QWDfl/Z
v L= 912w
> L =97 Pyt

» Introduce two sets I' and A

» [' constrains the matrix D and helps in bounding
ILL = LL||r -
» A constrains W2 ~'W and helps in bounding |LL — % || r

» Notation: Pra(B) =P(BN(I'NA))

41



Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

_32y/2logn
Define a = =577

P(ILL - ZZ|r > a) < Pra
Pra

42



Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

PFA(Z[LL 33] > a2/2) — term 1

i#£]
< ; []P’FA(\LL ~ LL|;; > ﬁ) + ]P)FA(’Ei - ZLL)i; > %)}
ILL - 2%\;; =
—_—

bound by A

(@_@/2) 2 (WaWi - Wk%k)/-@kk‘
(13 j]

%‘ Z(Wikwjk - %k%k)/-@kk’
%

1 1
LL—LL < ‘ ‘
\ lij Z Dy (Di; D)2 @kk(@ii%a‘)m
bound by T’
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Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

Define

A= ﬂ {’ Z(Wiijk — WaWix) | Dioe < n'/? logn‘}
A

. m{ 1 [1—n_l/Qlogn,l—i-n_l/Qlogn]}
Dyer.(

S
i | Di(DiiDjj)t 2 D ZiiP55)'/?

» With A and T, term 1 =0
» Similarly, we can show that term 2 =10

» All that is remaining is to bound term 3

44



Bounding Eigenvalues - Proof of
Non-Asymptotic Bound

Tools of the Trade: Hoeffding’s Inequality

Let Xi,..., X, beii.d. random variables with bounds
X; € [ai,bi]. Let S, = Z?:l X;. Then

212

P (|Sn — E[Sy]| > t) < 2¢ Tiaimed?

» D;; € [0,n] Vi and are i.i.d.
> WuWii/ Dir € 10,1/7] V k.

Applying Hoeffding’s inequality, we get the required exponential
bound on P ((I' N A)°).
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Bounding Eigenvectors

» The next step is to bound the eigenvectors of L and .Z.
» Notation:

» For symmetric matrix M, A(M) is the set of eigenvalues of
M.
» For a real interval S C R, Ag(M) = {A\(M)N S}

46



Bounding Eigenvectors (Contd...)

Tools of the Trade: Davis-Kahan Theorem

Let S C R be an interval. Denote £~ as an orthonormal matrix
whose column space is the eigenspace of .£.Z corresponding to
the eigenvalues in Ag(-Z.%). Denote by X the analogous matrix
for LL. Define the distance between S and the spectrum of
L% outside of S as

d=min{|{{ —s[;LeNZLL), L& S secS}

If 2" and X are of the same dimension, then there is an
orthonormal matrix O such that

ILL — 225

1
SIX - Zo|p < B2



Bounding Eigenvectors

Tools of the Trade: Weyl’s Inequality

Define A; > ... > ), to be the elements of \(.Z.Z) and
A1 > ... > A\, to be the elements of A(LL). Then the
eigenvalues of Z.% and LL converge in the following sense.

max\)\i — 5\1’ S HLL —.iﬂg”Q

» Weyl’s inequality bounds the eigenvalues of Z.Z and LL.

» Davis-Kahan theory bounds the eigenvectors of .Z.Z and
LL.

48



....and Then

» and then convergence of eigenvalues and eigenvectors...
» and then K-means...

» and then then result.

49



Bounding Eigenvectors - Main Theorem

Theorem 2: Convergence of Eigenvalues and
Eigenvectors

Define sequences of intervals S, € R and S!, = {¢: (> € S,,}.
Define
S —mf{|£—s\ LeNLWLM) 1¢ s, se S}
= inf{|t - s|;( € A5, (LL™), 5 ¢ 5}
Let ky, be the size of AS,Q(L(n)) and %, be the size of \g/ (™).
Let X,, € R"*#n and 2, € R™*“ be the matrices whose

orthonormal columns are eigenvectors corresponding to
eigenvalues in Ag/ (L) and A s (& (")) respectively.

50



Bounding Eigenvectors - Main Theorem

Theorem 2: Convergence of Eigenvalues and
Eigenvectors (Contd...)
Assumptions:

1. (Sparsity) 72 > 2/logn

2. (Eigen-gap) n~"2(logn)? = O(min{4,, ., })
Then eventuallyi k, = #,. Afterward,

logn
1 X0 = Z00nllF = O(W>
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Bounding Eigenvectors - Main Theorem
Proof

max ])\Z(n) — j\gn)] < | LWLM — 20 20, Weyl's Inequality

< LML — 2 2™ [l < Il
logn .

= 0<W) Main Theorem 1

= 0<n_1/2(log n)2) Assumption 1

= O(min{d,,d,}) Assumption 2

HL(”)L(”) _ ,}gﬂ(n)g(n)||fF
oz

1
= 0(571:;1;/2) Main Theorem 1 L[

1
§”Xn — ZnO0n|lF < Davis — Kahar
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Bounding the k-means error

k-means

» Input: Data Points - {x1,...,z,} € R* which are the n
rows of the matrix X € R"**

» OQutput: Centroids - {cy,...,cx} € RF which are the k
unique rows of the matrix C' € Z2™** where
Fk = {M € R™F . M has no more than k unique rows}

» Objective:

1 3 2 . 2
min Zmln . —mill2= min | X =M
{ma,....,my }ERF p g H ! g||2 Me%"XkH HF
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Bounding the k-means error - Couple of
Lemmas

Lemma 1
Consider SBM: W = ZBZT € R™" for B € R**¥ and
Z € {0,1}"xF,
1. There exists u € RF** such that Zu = 2~ € R™* whose

columns are eigenvectors of .Z corresponding to non-zero
eigenvalues.

2. zjpp = zjp & 2z; = z; where z; is the ith row of Z.

» Lemma 1 shows that applying k-means on the rows of
2" = Zp can reveal the block structure in the expected
Laplacian .Z.
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Bounding the k-means error - Couple of
Lemmas

Lemma 2
Define P to be the population of the largest block in Z.

P = max (Z72)j;
=1,k

For the orthonormal matrix O € R¥** in Theorem 2,

llei — zipOll2 < 1/V2P = ||c; — 0|2 < ||c; — 2juO||2 for zj # 2.

» Lemma 2 lays down the sufficient condition for correct
k-means clustering.

» Motivated by Lemma 2, we define the set of misclustered
nodes as:

M = {i:|ci—zp0l2 >1/V2P}.
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Bounding the k-means error - Main
Theorem

Theorem 3: Bound on the misclustered nodes
Under the assumptions:

1. (Sparsity) 72 > 2/logn

2. (Eigen-gap) n~/?(logn)? = O()\%n)

The number of misclustered nodes is bounded by

Py(logn)?
AL Tan

| = o(

> almost surely.
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Bounding the k-means error - Main
Theorem Proof

C =argmn| X - M|} = [|X = Clla < [|X = ZuOll2 (1)
Meggnxk

|C— ZuO||s < ||C = X||2 + | X — ZuOlla  Triangle Inequality
<2||X — ZuOl|2 Equation (1)
(2)

In Theorem 2, define S, = [A7 /2,1] and 6, = 4, = A\ /2. By
assumption, n~/?(logn)? = O()\in) = O(min(y,d),))-
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Bounding the k-means error - Main
Theorem Proof (Contd...)

S| =D 1<2P0) e — 2ip0)3
icM M

< 25,|C — ZuO|%

< 2P, || X — ZuO|% Equation (2)
(Pn(logn)2

=0\ ————

1 4
)\knTnn

) almost surely. [

58



Consistency in Special Cases

The four-parameter Stochastic Block Model: SBM (k, s,r,p)
» k blocks each containing s nodes

» Probability of edge between nodes from same cluster is
r € [0,1] and from different clusters is p 4 r € [0, 1]

» B =plyr + 7117 Ny = 1/(k(r/p) + 1) and P, = n/k.
Consistency under SBM (k, s, r, p)

» || = o(k*(logn)?) almost surely.

» For k = O(n'/*/logn), % = o(n~'/*) almost surely.
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Hypergraphs

» Collection of sets / Generalization of graphs

» Each edge can connect more than two nodes

o
Graph 3-uniform Hypergraph
(2-uniform) hypergraph
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Hypergraphs in Computer Vision

Subspace clustering Motion segmentation

Involves 3-way / 4-way similarities (uniform hypergraph)
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Hypergraph Partitioning Methods

» Partitioning circuits [Schweikert & Kernighan '79]
» Graph approximation for hypergraphs [Hadley '95]
» Spectral hypergraph partitioning [Zien et al. '99]
» hMETIS for VLSI design [Karypis & Kumar '00]
» Uniform hypergraph in databases [Gibson et al. '00]
» Uniform hypergraph in vision [Agarwal et al. '05]
» Tensor based algorithms [Govindu '05; Chen & Lerman '09]
» Learning with non-uniform hypergraph [Zhou et al. '07]

» Higher order learning  [Duchenne et al. '11; Rota Bulo & Pellilo
'13; etc.
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Spectral Uniform Hypergraph Partitioning’

m- unlform hypergraph

=)

Adjacency tensor A Flattened matrlx A
Find dominant left Run k-means
singular vectors on rows

T(Govindu 2005)
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Normalized Hypergraph Cut

Approach: [Zhou, Huang & Schélkopf '07]

> Solve spectral relaxation of minimizing normalized
hypergraph cut

Reduction to graph:
» A, D € R™" g0 that A;; = > &, Di; = degree(i)

le]”

e>1,7
o o
1.080‘?
o 0.5
) o9 °
o O

Spectral clustering:
» Normalized Laplacian, L = [ — D~Y/2AD~1/2
» Compute k leading orthonormal eigenvectors of L

» k-means on normalized rows of eigenvector matrix
64



Planted Partition Model
(non-uniform hypergraph)?

Model:
» Given n nodes, and k (hidden) classes
» Maximum edge cardinality M
» Unknown m!-order tensors B(™) ¢ [0, 1]F*kx--xk
» Unknown sparsity factors au,n, m =2,3,..., M
» Independent edges with label-dependent distribution

Crass!  Crassi CLAsS i2

m-HYPEREDGE

Prob(m-edge) = am,nB(m)

1192...0m

fGhoshdastidar & Dukkipati (2017), Annals of Statistics
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Consistency of NH-Cut?

Define:
» A=E[A], D=E[D] and £L =1 — D~1/2AD~1/?
» d = min,; E[degree(i)]
» § = k" cigen-gap of L

Theorem
There exists constant C' > 0, such that, if

knmax (logn)?
nmin52

0>0 and d>C

then with probability (1 — o(1))

kNmax logn) _ o(n).

Error(y,¢') = O ( 524

§Choshdastidar & Dukkipati (2017), Annals of Statistics
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Concluding Remarks

Spectral approaches offer:

» nice approximations for problems of community detection
in networks with

» theoretical guarantees (Still lot to do!) to establish which
one would indulge in

» results from numerical linear algebra (Davis-Kahan
theorems),
» concentration inequalities from random matrix theory.

Must read:
» Speilman’s lecture notes on spectral graph theory
» Luxburg’s review on spectral clustering

Acknowledgements: Some of the figures in this presentation have been

borrowed from Debarghya.
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