PHILIPS sense and simplicity

Medical Imaging : Looking beyond structures

Uma Ranjan Philips Healthcare Philips Innovation Campus, Bangalore

Image Processing at Philips

- Video, motion compensation, compression
- Image-guided procedures
- Imaging & visualizing small structures : CT, MR
- Imaging physiology
- Some open problems in registration and segmentation

Functional Imaging (The search for Istina)

- Images the metabolism of the organ
 - Nuclear Medicine
 - fMRI
- Advantages
 - Early detection (functional changes lead to structural changes)
 - Detection of dead tissue
 - Individualized therapy

Nuclear Medicine Applications

- Oncology
 - PET (FDG) scans to identify tumors
- Cardiology
 - SPECT scans to identify
 - perfusion defects
 - Muscle Viability
 - Chronic Heart Failure
- Neurology
 - PET (Dopamine) to identify
 - Brain Plaque
 - Dementia

Nuclear Medicine Principles

- Radiopharmaceutical injected
 - Affinity for certain organs/tissues
- Delayed imaging
 - To image a specific organ
 - Depends on physical half-life and biological half-life
- Radioactive decay measured
 - Photon emission : gamma camera (NM / SPECT)
 - Positron emission : electronic collimation (PET)

Image acquisition in NM

Example : Cardiac Ischemia

Example : Lymphomas

The Istina comes full circle

Fusion of hypoxia map and CT

Is tumor on the lung or on the stomach?

The search for Vishnu ?

- Truly early diagnosis ?
 - Diseases originate at cellular/sub-cellular level
 - Imaging happens at organ level
- Would like to
 - Connect in-vivo results with cellular-level phenomena
 - Dynamic Imaging holds the key !

What is Dynamic Imaging?

Why Dynamic Imaging ?

- Processes during acquisition :
 - Drug enters the organ of interest
 - Drug is metabolized
 - Drug is washed out due to excretion
- Static image gives an "average" impression
- Dynamic image gives details of each phase
 - Understanding the dynamics of drug interactions in the body

Kinetic Modeling

- Tracer in an organ undergoes various reactions : Diffusion, Absorption, Excretion
- In-Vivo imaging : images are a composite of various superimposed signals.
- Mathematical model relates the dynamics of the tracer molecule and its possible states to the in-vivo image.
- Each state : called compartment. Compartments can evolve in time but not in extent.

Compartmental Analysis

Mass Balance Equations

$$\frac{\partial F(t)}{\partial t} = k_1 P(t) - k_2 F(t) \cdots$$
$$\frac{\partial B(t)}{\partial t} = k_0 \max(B, F) \cdots$$
$$\frac{\partial N(t)}{\partial t} = k_4 F(t) - k_5 N(t) \cdots$$

Key Assumptions

- Tracer (often drugs) causes no change in physiology
 - Low (trace) quantity
- Tracer is in steady-state with the tracee
 - Tracer (eg. F18) goes everywhere that tracee (eg. Glucose in the brain) goes
- No isotope effects
 - Labelling with a radio-nuclide does not alter its properties
- Parameters of the model are time-invariant

Input Function

- Tracer levels in plasma :
 - Not part of the dynamics
 - Drive the model
- Initial Condition of the system : 0
- Assumption : All tissues in the body see the same input function
 - Input : activity measured in blood plasma during the experiment

Model Parameters

- Rate constants of various phenomena
- Can be estimated by fitting model to actual dynamic data
- Correspond to physiologically relevant parameters

Reference Tissue model

- Plasma measurement
 - Done by catheter during experiment
 - Invasive
- Alternative :
 - Define artery feeding blood to the target region as a compartment
 - "Reference" compartment activity acts as input function

One-compartment model

- Assumes whole body is a single compartment
- Can be used when drug rapidly equilibrates with the surrounding tissue
- eg. Distribution of aminoglycosides (15-30 min)
- Denotes
 - Blood flow when extraction fraction is large
 - Permeability when extraction fraction is small

Pharmacokinetic Modeling NH₃/Rb₈₂ Myocardial Blood Flow

Philips Healthcare Bangalore Competence Center, Uma Ranjan Hopital Erasme, Brussels

Two-compartment model

- Assumes 2 tissue (and one plasma) compartment
- Used when tracer equilibrates slowly with the surrounding tissue (1-2 hours)
- eg. FDG PET
- Rate constants denote
 - Phosphorylation in brain studies
 - Hypoxia in tumor studies

Pharmacokinetic Modeling FMISO / FAZA tumor hypoxia

dynamic FAZA PET

CT / k_3 fusion

Image data cortesy: TU Munich, Axel Weber

Three-compartment model

- Assumes 3 tissue (and one plasma) compartment
- Used when 2 tissue compartments are not sufficient
- eg. Receptor-ligand studies (free and bound states of ligands)
- Rate constants denote
 - Binding potential

Pharmacokinetic Modeling Neuroreceptor binding

Image data courtesy: Dr.Ralph Buchert, University Hospital, Hamburg-Eppendorf 🔓 dep07505

Philips Healthcare Bangalore Competence Center, Uma Ranjan

When intensities don't suffice : Segmentation

When information is orthogonal : Registration

Curse of demography : Cancer or Tuberculosis ?

Western : Suspect Cancer

Goo J M et al. Radiology 2000;216:117-121 Radiology

©2000 by Radiological Society of North America

Asian : Suspect TB

Differential Staining of cells

At cell membrane vs in the cytoplasm

Ultrasound-Mediated Drug Delivery

- Drugs packed into microbubbles
- Released by focused US pulse