

\mathcal{M} -kernel Algorithm

Data: (V, E, F): an edge-weighted graph **Result**: F: an \mathcal{M} -kernel of the input map, and its minima (V_M, E_M) 1 $L \leftarrow \emptyset$; 2 Compute $M(F) = (V_M, E_M)$ and $F^{\ominus}(x)$ for each $x \in V$; 3 foreach $u \in E$ outgoing from (V_M, E_M) do $L \leftarrow L \cup \{u\}$; 4 while there exists $u \in L$ do $L \leftarrow L \setminus \{u\}$; 5 if *u* is border for *F* then 6 $x \leftarrow$ the vertex in *u* such that $F^{\ominus}(x) < F(u)$; 7 $y \leftarrow$ the vertex in *u* such that $F^{\ominus}(y) = F(u)$; 8 $F(u) \leftarrow F^{\ominus}(x)$; $F^{\ominus}(y) \leftarrow F(u)$; 9 $V_M \leftarrow V_M \cup \{y\}$; $E_M \leftarrow E_M \cup \{u\}$; 10 foreach $v = \{y', y\} \in E$ with $y' \notin V_M$ do $L \leftarrow L \cup \{v\}$; 11 . Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morp

Thinnings: watershed algorithm

Property

The graph X is a shortest path spanning forest relative to the minima of F if and only if X is an MSF relative to the minima of F

Thinnings: watershed algorithm

29/34

Property

- Let X be a graph (the seeds)
- A subset S of E is a watershed of the flooding of F by X if and only if S is a cut induced by a shortest path spanning forest relative to X

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

