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Thinnings: a new paradigm to compute watershed cuts

Intuitively, a thinning consists of iteratively lowering the values of
the edges which satisfy a certain property
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Thinnings: watershed algorithm

Local edge classification

The altitude of a vertex x , denoted F⊖(x), is the minimal
altitude of an edge which contains x :

F⊖(x) = min{F (u) | u ∈ E and x ∈ u}

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 4/34

Thinnings: watershed algorithm

Local edge classification

The altitude of a vertex x , denoted F⊖(x), is the minimal
altitude of an edge which contains x :

F⊖(x) = min{F (u) | u ∈ E and x ∈ u}

5

5 8 1

4 5 2

3 4 7 0

4

6

3

4

5

4

5

1

0

0

1

2

3

a b c d

e f g h

i j k l

m n o p

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 4/34



Thinnings: watershed algorithm

Local edge classification

The altitude of a vertex x , denoted F⊖(x), is the minimal
altitude of an edge which contains x :

F⊖(x) = min{F (u) | u ∈ E and x ∈ u}

5

5 8 1

4 5 2

3 4 7 0

4

6

3

4

5

4

5

1

0

0

1

2

3

2

a b c d

e f g h

i j k l

m n o p

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 4/34

Thinnings: watershed algorithm

Local edge classification

k

k’<k k’’<k

k

k’<k k

k

k k

locally separating border inner

5

5 8 1

4 5 2

3 4 7 0

4

6

3

4

5

4

5

1

0

0

1

2

3

a b c d

e f g h

i j k l

m n o p

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 4/34



Thinnings: watershed algorithm

Local edge classification

k

k’<k k’’<k

k

k’<k k

k

k k

locally separating border inner

We say that u = {x , y} is a border edge for (for F ) if:

F (u) = max(F (x),F (y)); and F (u) > min(F (x), F (y))
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Thinnings: watershed algorithm

B-thinnings & B-cuts

The lowering of F at u is the map F ′ such that:

F ′(u) = minx∈u{F
⊖(x)}; and

F ′(v) = F (v) for any edge v ∈ E \ {u}.
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Thinnings: watershed algorithm

B-thinnings & B-cuts

Definition

A map H is a B-thinning of F if H may be derived from F by
iterative lowerings at border edges
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Thinnings: watershed algorithm

B-thinnings & B-cuts

Definition

A map H is a B-thinning of F if H may be derived from F by
iterative lowerings at border edges

The map H is a B-kernel of F if H is a B-thinning of F and if
there is no border edge for H.
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Thinnings: watershed algorithm

B-thinnings & B-cuts

Definition

We say that S ⊆ E is a B-cut of F if there exists a B-kernel H
of F such that S is the set of all edges linking two distinct
minima of H.
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Thinnings: watershed algorithm

B-kernels, B-cuts & watersheds

Theorem

A graph X is an MSF relative to the minima of F if and only if X
is the graph of the minima of a B-kernel of F

An edge set S ⊆ E is a B-cut of F if and only if S is a watershed
of F
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Thinnings: watershed algorithm

Border thinning algorithm ?

B-thinnings:

Rely on a local condition
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Thinnings: watershed algorithm

Border thinning algorithm ?

B-thinnings:

Rely on a local condition
Adapted to parallel strategies

Problem

But a same edge can be lowered several times

Naive sequential algorithm runs in O(n2)

0000
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Thinnings: watershed algorithm

Towards a sequential linear-time algorithm . . .
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Definition

An edge u is M-border (for F ) if u is a border edge for F and if
one of its vertices belongs to a minimum of F
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An edge u is M-border (for F ) if u is a border edge for F and if
one of its vertices belongs to a minimum of F

We can then define M -thinnings, M -kernels and M -cuts of F
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Thinnings: watershed algorithm

M -kernels, M -cuts & watersheds

Theorem

A graph X is an MSF relative to the minima of F if and only if X
is the graph of the minima of a M -kernel of F

An edge set S ⊆ E is an M -cut of F if and only if S is a
watershed cut of F
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Thinnings: watershed algorithm

M -kernel Algorithm

Data: (V ,E , F ): an edge-weighted graph

Result: F : an M -kernel of the input map, and its minima (VM ,EM)

L← ∅ ;1

Compute M(F ) = (VM ,EM) and F⊖(x) for each x ∈ V ;2

foreach u ∈ E outgoing from (VM ,EM) do L← L ∪ {u} ;3

while there exists u ∈ L do4

L← L \ {u} ;5

if u is border for F then6

x ← the vertex in u such that F⊖(x) < F (u) ;7

y ← the vertex in u such that F⊖(y) = F (u) ;8

F (u)← F⊖(x) ; F⊖(y)← F (u) ;9

VM ← VM ∪ {y} ; EM ← EM ∪ {u} ;10

foreach v = {y ′, y} ∈ E with y ′ /∈ VM do L← L ∪ {v};11
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Thinnings: watershed algorithm

M -kernel algorithm: analysis

Results

Any edge is lowered at most once
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Linear-time (O(|V |+ |E |)) whatever the range of F

No need to sort
No need to use a hierarchical/priority queue
No need to use union-find structure
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Results

Any edge is lowered at most once

Linear-time (O(|V |+ |E |)) whatever the range of F

No need to sort
No need to use a hierarchical/priority queue
No need to use union-find structure

The only required data structure is a list for the set L
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Thinnings: watershed algorithm

Watershed on plateaus?

(a) (b) (c)

(a) Representation of an edge weighted graph (4-adjacency)

Watersheds computed by B-kernel algorithms implementing set L

(b) as a LIFO list
(c) as a priority queue with a FIFO breaking ties policy
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Thinnings: watershed algorithm

Watershed: pracical problem #2

Problem

In practice: over-segmentation
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Thinnings: watershed algorithm

Over-segmentation

Solution 2

Seeded watershed (or marker based watershed)
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Thinnings: watershed algorithm

Over-segmentation

Solution 2

Seeded watershed (or marker based watershed)

Methodology proposed by Beucher and Meyer (1993)

1 Recognition
2 Delineation (generally done by watershed)
3 Smoothing
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Thinnings: watershed algorithm

Over-segmentation

Solution 2

Seeded watershed (or marker based watershed)

Methodology proposed by Beucher and Meyer (1993)

1 Recognition
2 Delineation (generally done by watershed)
3 Smoothing

Semantic information taken into account at steps 1 and 3
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Thinnings: watershed algorithm

Seeded watershed

Seeded segmentation is very popular

A user “marks by seeds” the object that are to be segmented
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Seeded segmentation is very popular

A automated procedure “marks by seeds” the object that are to
be segmented

MSF cuts fall into this category
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Thinnings: watershed algorithm

Seeded watershed

Seeded segmentation is very popular

A automated procedure “marks by seeds” the object that are to
be segmented

MSF cuts fall into this category

A morphological solution

Mathematical morphology is adapted to the design of such
automated recognition procedure
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Thinnings: watershed algorithm

Seeded watershed: application

Myocardium segmentation in 3D+t ciné MRI

J. Cousty et al., 2007
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Thinnings: watershed algorithm

Seeded watershed: application

Myocardium segmentation in 3D+t ciné MRI

J. Cousty et al., 2007

Cross-section by cross-section acquisition

FV

∂Ep ∂En

CVG

MVG
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Seeded watershed: application

Myocardium segmentation in 3D+t ciné MRI
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First, along time (ECG gated)
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Thinnings: watershed algorithm

Seeded watershed: application

Myocardium segmentation in 3D+t ciné MRI

J. Cousty et al., 2007

Cross-section by cross-section acquisition

First, along time (ECG gated)

Then, in space
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Thinnings: watershed algorithm

Seeded watershed: application

Endocardial segmentation:
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Seeded watershed: application

Endocardial segmentation:

Upper threshold (recognition)
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Thinnings: watershed algorithm

Seeded watershed: application

Endocardial segmentation:

Upper threshold (recognition)

Geodesic dilation in a lower threshold (delineation)
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Thinnings: watershed algorithm

Seeded watershed: application

Epicardial segmentation:
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Seeded watershed: application

Epicardial segmentation:

Internal and external markers (recognition):

Repulsed dilation
Homotopic dilation
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Seeded watershed: application

Epicardial segmentation:

Internal and external markers (recognition):

Repulsed dilation
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Watershed in 4D space
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Thinnings: watershed algorithm

Seeded watershed: application

Epicardial segmentation:

Internal and external markers (recognition):

Repulsed dilation
Homotopic dilation

Watershed in 4D space

Smoothing (alternated sequential filters)
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Thinnings: watershed algorithm

Seeded watershed: application

res
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Thinnings: watershed algorithm

Seeded watershed for Diffusion Tensor Images (DTIs)

DTI

3D Diffusion Tensor Image equipped with the direct adjacency
Edges weighted by the Log-Euclidean distance between tensors
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Thinnings: watershed algorithm
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Seeded watershed for Diffusion Tensor Images (DTIs)

DTI seeds segmentation by MSF cuts

3D Diffusion Tensor Image equipped with the direct adjacency
Edges weighted by the Log-Euclidean distance between tensors
Seeds automatically obtained from a statistical atlas
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Thinnings: watershed algorithm

Discrete optimization for seeded segmentation

Minimum spanning forests

Shortest paths spanning forests

Min-cuts

Random Walkers
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Thinnings: watershed algorithm

Connection value

Definition

Let π = 〈x0, . . . , xℓ〉 be a path in G.

ΥF (π) = max{F ({xi−1, xi}) | i ∈ [1, ℓ]}
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Connection value

Definition

Let π = 〈x0, . . . , xℓ〉 be a path in G.

ΥF (π) = max{F ({xi−1, xi}) | i ∈ [1, ℓ]}

The connection value between two points x and y is

ΥF (x , y) = min{ΥF (π) | π path from x to y}
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Connection value

Definition

Let π = 〈x0, . . . , xℓ〉 be a path in G.

ΥF (π) = max{F ({xi−1, xi}) | i ∈ [1, ℓ]}

The connection value between two points x and y is

ΥF (x , y) = min{ΥF (π) | π path from x to y}

The connection value between two subgraphs X and Y is

ΥF (X ,Y ) = min{ΥF (x , y) | x ∈ V (X ), y ∈ V (Y )}
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Thinnings: watershed algorithm

Subdominant ultrametric

Remark

The connection value is a (ultrametric) distance in a graph
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MSFs preserve connection values

Theorem

If Y is an MSF relative to X ,

Then, for any two distinct components A et B of X :

ΥF (A,B) = ΥF (A′,B ′)

where A′ et B ′ are the two components of Y that contains A et B
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Thinnings: watershed algorithm

Shortest paths spanning forests

Remark

The connection value is a (ultrametric) distance in a graph
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Thinnings: watershed algorithm

Shortest paths spanning forests

Definition

Let X be a graph (the seeds)

We say that Y is a shortest path forest relative to X if

Y is a forest relative toX and
for any x ∈ V (Y ), there exists, from x to X , a path π in Y such
that F (π) = F ({x}, X )
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Thinnings: watershed algorithm

MSFs and shortest paths forests

Property

If Y is a MSF relative to X , then Y is a shortest path spanning
forest relative to X
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MSFs and shortest paths forests

Property

If Y is a MSF relative to X , then Y is a shortest path spanning
forest relative to X

2 8 0

0

089

2 8 0

0

089

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 27/34

Thinnings: watershed algorithm

MSFs and shortest paths forests

Property

If Y is a MSF relative to X , then Y is a shortest path spanning
forest relative to X

2 8 0

0

089

2 8 0

0

089

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 27/34



Thinnings: watershed algorithm

MSFs and shortest paths forests

Property

If Y is a MSF relative to X , then Y is a shortest path spanning
forest relative to X
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The converse is, in general, not true
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Thinnings: watershed algorithm

Synthetic image example

Image Dissimilarities

MSF cut (white) - seeds (red) SPF cut (white) - seeds (red)
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Shortest path forests and watersheds

Property

The graph X is a shortest path spanning forest relative to the
minima of F if and only if X is an MSF relative to the minima of F
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Shortest path forests and watersheds

Property

The graph X is a shortest path spanning forest relative to the
minima of F if and only if X is an MSF relative to the minima of F

Property

Let X be a graph (the seeds)

A subset S of E is a watershed of the flooding of F by X if and
only if S is a cut induced by a shortest path spanning forest
relative to X

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 29/34



Thinnings: watershed algorithm

Min-cuts

Definition

Let X be a graph (the seeds)

Let C ⊆ E be a cut relative to X

The cut C is called a minimum cut (min-cut) relative to X if, for
any cut C ′ relative to X we have F (C ) ≤ F (C ′)
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Thinnings: watershed algorithm

Min-cuts

Definition

Let X be a graph (the seeds)

Let C ⊆ E be a cut relative to X

The cut C is called a minimum cut (min-cut) relative to X if, for
any cut C ′ relative to X we have F (C ) ≤ F (C ′)

a: an image with seeds X in red and blue, b (resp. c): MSF cut (resp. min-cut) relative
to X (white) where F is the gradient of (a) (resp. its inverse) [from Allène et al., IVC 2010]
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Weight transformation
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Thinnings: watershed algorithm

Weight transformation

Let g be a decreasing (resp. increasing) map in R
+
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Weight transformation

Let g be a decreasing (resp. increasing) map in R
+

X MINimum SF for F iff X is a MAXimum SF (resp. MINSF)
for g ◦ F
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Weight transformation

Let g be a decreasing (resp. increasing) map in R
+

X MINimum SF for F iff X is a MAXimum SF (resp. MINSF)
for g ◦ F
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Weight transformation

Let g be a decreasing (resp. increasing) map in R
+

X MINimum SF for F iff X is a MAXimum SF (resp. MINSF)
for g ◦ F

Let F p : F p(u) = [F (u)]p
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Weight transformation

Let g be a decreasing (resp. increasing) map in R
+

X MINimum SF for F iff X is a MAXimum SF (resp. MINSF)
for g ◦ F

Let F p : F p(u) = [F (u)]p

X MAXSF for F p iff X MAXSF for F

5
5

5
5

5

2
4

4

3

2

4

0

5

2

5
3

4

3

4

p
p

p
p

p

p

p

p

p
p

p
p

p
p p

p
p p

p

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 31/34



Thinnings: watershed algorithm

Weight transformation

Let g be a decreasing (resp. increasing) map in R
+

X MINimum SF for F iff X is a MAXimum SF (resp. MINSF)
for g ◦ F

Let F p : F p(u) = [F (u)]p

X MAXSF for F p iff X MAXSF for F

Property not verified by min-cuts
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Thinnings: watershed algorithm

Watershed & min-cuts

Theorem

There exists a real k such that for any p ≥ k

any min-cut for F p is a MAXSF cut for F p

Allène et al., Some links between extremum spanning forests, watersheds

and min-cuts, IVC 2010
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Watershed & min-cuts: illustration [Allène2010]
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Random walks

Similar results hold true for random walks segmentation

See L. Najman’s talk next week
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Summary

Defining watershed in discrete spaces is difficult

Grayscale image as vertex weighted graphs
Region merging problems
The large familly of watersheds

Watershed in edge weighted graphs

Watershed cuts: a consistent framework
Minimum spanning forests: watershed optimality
Thinnings: watershed algorithms

Seeded segmentation

Watershed in practical applications
Comparison with other method of combinatorial optimization
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