Segmentation by discrete watersheds Part 1: Watershed cuts

Jean Cousty

 $\begin{array}{c} Four-Day\ Course\\ on\\ Mathematical\ Morphology\ in\ image\ analysis\\ Bangalore\ 19-22\ October\ 2010 \end{array}$

1/36

J. Serra, J. Cousty, B.S. Dava Sagar: Course on Math. Morphology

An applicative introduction to segmentation in medicine

■ *Magnetic Resonance Imagery* (MRI) is more and more used for cardiac diagnosis

An applicative introduction to segmentation in medicine A cardiac MRI examination includes three steps: Spatio-temporal acquisition (ciné MRI)

J. Serra, J. Cousty, B.S. Dava Sagar: Course on Math. Morphology

im

2/36

An applicative introduction to segmentation in medicine

A cardiac MRI examination includes three steps:

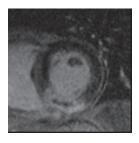
- Spatio-temporal acquisition (ciné MRI)
- Spatio-temporal acquisition during contrast agent injection (Perfusion)

im

An applicative introduction to segmentation in medicine

A cardiac MRI examination includes three steps:

- Spatio-temporal acquisition (ciné MRI)
- Spatio-temporal acquisition during contrast agent injection (Perfusion)
- Volumic acquisition after the evacuation of the contrast agent (delayed enhanced MRI)



im

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

0./26

Medical problem #1

Problem

■ Visualizing objects of interests in 3D or 4D images

rendu2

4 D > 4 B > 4 E > 4 E > 9 Q G

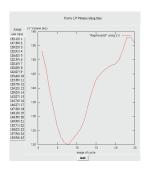
J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

3/36

Medical problem #2

Problem

- Determining measures useful for cardiac diagnosis
 - Infarcted volumes, ventricular volumes, ejection fraction, myocardial mass, movement . . .



◆ロ > ◆回 > ◆ 注 > ◆ 注 > り Q ()

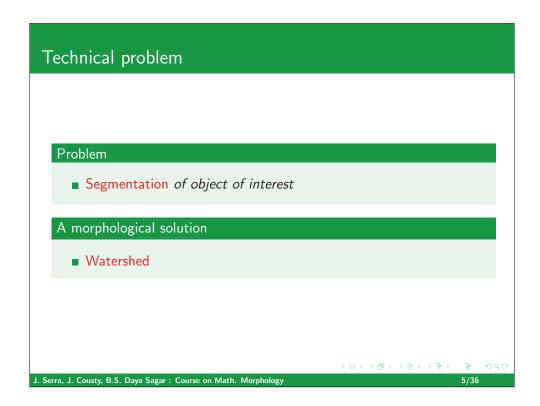
J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

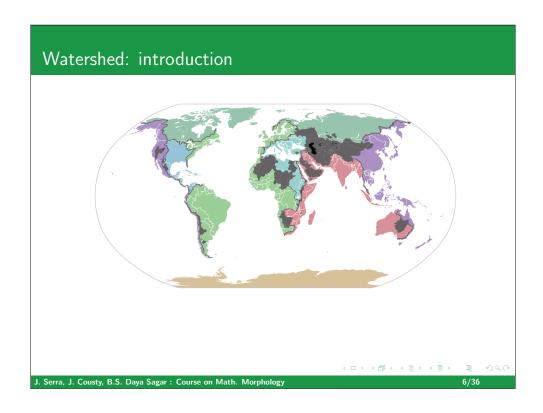
4/36

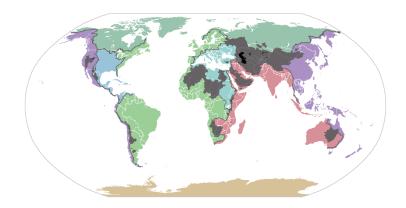
Technical problem

Problem

■ Segmentation of object of interest







■ For topographic purposes, the watershed has been studied since the 19th century (Maxwell, Jordan, ...)

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

6/36

Watershed: introduction

 One hundred years later (1978), it was introduced by Digabel and Lantuéjoul for image segmentation

• One hundred years later (1978), it was introduced by Digabel and Lantuéjoul for image segmentation

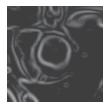
4 D > 4 D > 4 E > 4 E > E 990

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

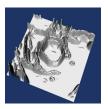
6/36

Watershed: introduction

• One hundred years later (1978), it was introduced by Digabel and Lantuéjoul for image segmentation



• One hundred years later (1978), it was introduced by Digabel and Lantuéjoul for image segmentation



4 D > 4 D > 4 E > 4 E > E 990

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

6/36

Watershed: introduction

• One hundred years later (1978), it was introduced by Digabel and Lantuéjoul for image segmentation

■ One hundred years later (1978), it was introduced by Digabel and Lantuéjoul for image segmentation

(ロ) (団) (注) (注) 注 りへの

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

6/36

Watershed: problem #1

Problem

■ How to define the watershed of digital image?

Watershed: problem #1

Problem

- How to define the watershed of digital image?
- Which mathematical framework(s)?

(ロ) (団) (注) (注) 注 りへの

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

7/36

Watershed: problem #1

Problem

- How to define the watershed of digital image?
- Which mathematical framework(s)?
- Which properties?

Watershed: problem #1

Problem

- How to define the watershed of digital image?
- Which mathematical framework(s)?
- Which properties?
- Which algorithms ?

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

7/36

Watershed: problem #2

Problem

In practice: over-segmentation

Over-segmentation and region merging

Solution 1

 Region merging methods consist of improving an initial segmentation by progressively merging pairs of neighboring regions

(ロ) (리) (토) (토) (토) (9QC

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

9/36

Over-segmentation and region merging

Solution 1

 Region merging methods consist of improving an initial segmentation by progressively merging pairs of neighboring regions

■ Example : delayed enhanced cardiac MRI [DOUBLIER03]

Over-segmentation and region merging

Solution 1

 Region merging methods consist of improving an initial segmentation by progressively merging pairs of neighboring regions

■ Example : delayed enhanced cardiac MRI [DOUBLIER03]

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

9/36

Over-segmentation and region merging

Solution 1

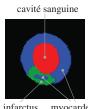
 Region merging methods consist of improving an initial segmentation by progressively merging pairs of neighboring regions

■ Example : delayed enhanced cardiac MRI [DOUBLIER03]

Over-segmentation and region merging

Solution 1

 Region merging methods consist of improving an initial segmentation by progressively merging pairs of neighboring regions



■ Example : delayed enhanced cardiac MRI [DOUBLIER03]

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

9/36

Over-segmentation

Solution 2

■ Seeded watershed (or marker based watershed)

Over-segmentation

Solution 2

- Seeded watershed (or marker based watershed)
- Methodology proposed by Beucher and Meyer (1993)
 - 1 Recognition
 - **2 Delineation** (generally done by watershed)
 - **3** Smoothing

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

10/36

Over-segmentation

Solution 2

- Seeded watershed (or marker based watershed)
- Methodology proposed by Beucher and Meyer (1993)
 - 1 Recognition
 - **2 Delineation** (generally done by watershed)
 - **3** Smoothing
- Semantic information taken into account at steps 1 and 3
- To kow more about this framework, wait for the second lecture of today

Outline

- 1 Defining discrete watersheds is difficult
 - Grayscale image as vertex weighted graphs
 - Region merging problems
- 2 Watershed in edge-weighted graphs
 - Watershed cuts: definition and consistency
 - Minimum spanning forests: watershed optimality

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

11/36

Defining discrete watersheds is difficult

Can we draw a watershed of this image?

2	2	2	2	2
40	30	30	30	40
40	20	20	20	40
40	40	20	40	40
1	5	20	5	1

■ Image equipped with the 4-adjacency

Can we draw a watershed of this image?

A	A	A	A	A
40	30	30	30	40
40	20	20	20	40
40	40	20	40	40
В	5	20	5	С

- Image equipped with the 4-adjacency
- Label the pixels according to catchment basins letters A,B and C

4□ → 4回 → 4 = → 4 = → 9 Q (P)

Defining discrete watersheds is difficult

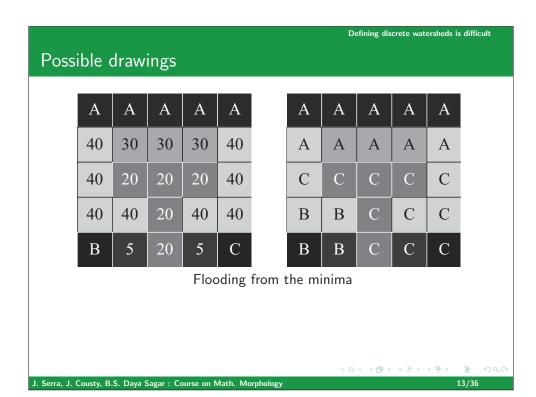
J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

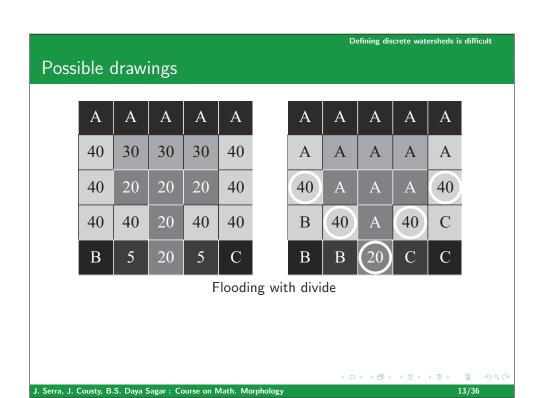
12/36

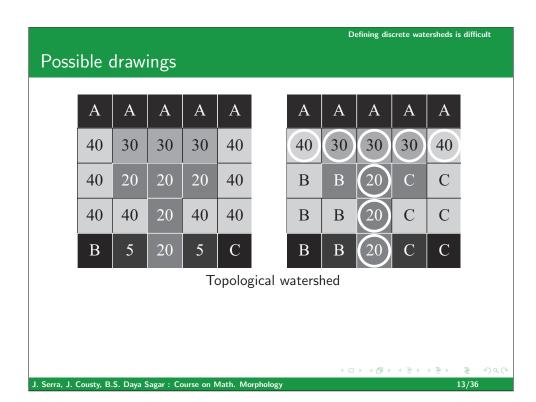
Possible drawings

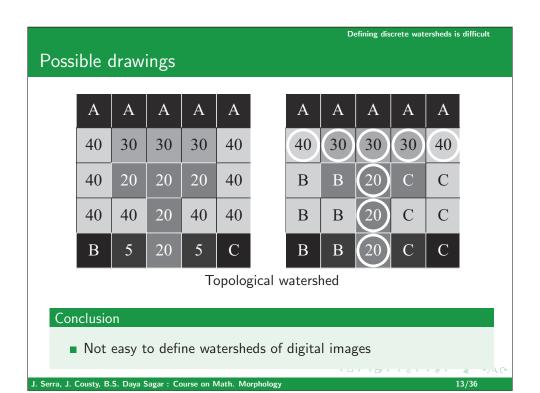
A	A	A	A	A
40	30	30	30	40
40	20	20	20	40
40	40	20	40	40
В	5	20	5	С

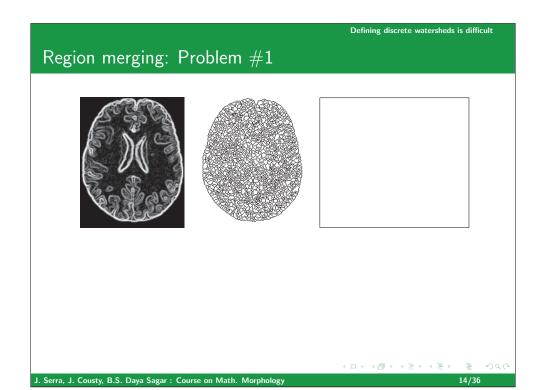
Topographical watershed

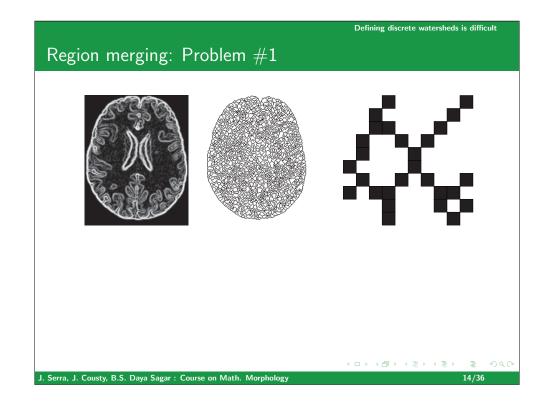


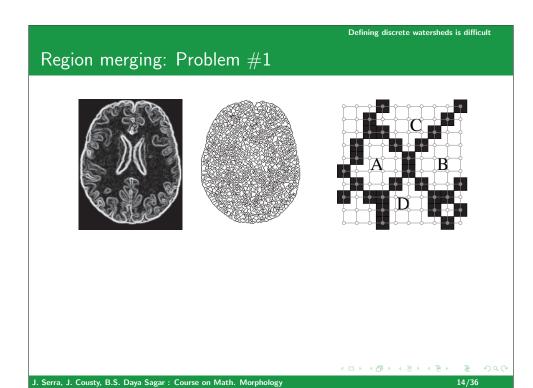






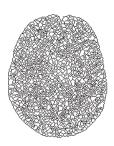


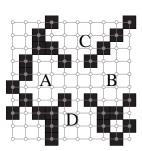




Region merging: Problem #1 **Problem #1** **

Region merging: Problem #1





Problem: "When 3 regions meet", [PAVLIDIS-77]

(ロ) (리) (토) (토) (토) (9QC

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

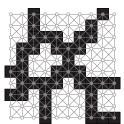
14/36

Defining discrete watersheds is difficul

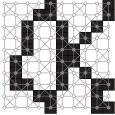
Region merging: Problem #1



adjacence directe



adjacence indirecte

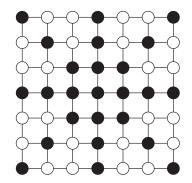


 $\overline{}$?

Problem: "When 3 regions meet", [PAVLIDIS-77]

■ Is there some adjacency relations (graphs) for which any pair of neighboring regions can always be merged, while preserving all other regions?

Region merging: Problem # 2



 A cleft is a set of vertices from which a point cannot be removed while leaving unchanged the number of connected components of its complement

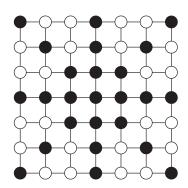
(ロ) (回) (目) (目) (目) (O) (O)

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

15/36

Defining discrete watersheds is difficult

Region merging: Problem # 2



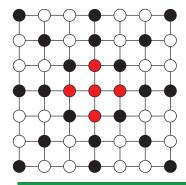
- A cleft is a set of vertices from which a point cannot be removed while leaving unchanged the number of connected components of its complement
- A cleft is *thin* if all its vertices are adjacent to its complement

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

15/36

Defining discrete watersheds is difficult

Region merging: Problem # 2



- A cleft is a set of vertices from which a point cannot be removed while leaving unchanged the number of connected components of its complement
- A cleft is *thin* if all its vertices are adjacent to its complement

Problem: Thick cleft (or binary watershed)

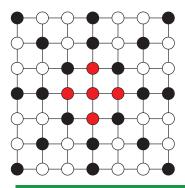
<ロ > < 回 > < 回 > < 巨 > < 巨 > し ● < つ へ ○

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

15/36

Defining discrete watersheds is difficult

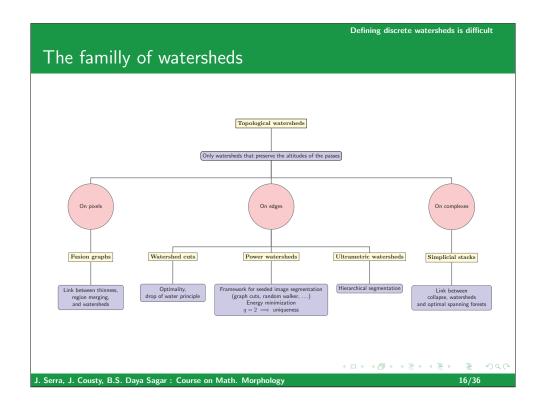
Region merging: Problem # 2

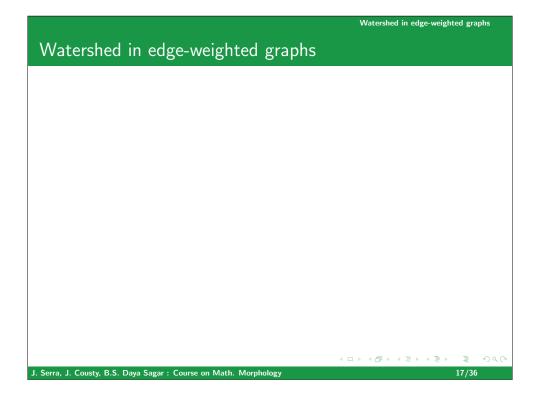


- A cleft is a set of vertices from which a point cannot be removed while leaving unchanged the number of connected components of its complement
- A cleft is thin if all its vertices are adjacent to its complement

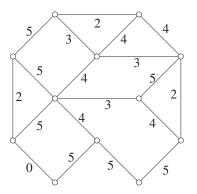
Problem: Thick cleft (or binary watershed)

■ Is there some graphs in which any cleft is thin?





- Let G = (V, E) be a graph.
- Let F be a map from E to $\mathbb R$



J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

17/36

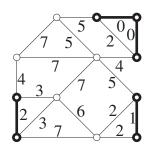
Watershed in edge-weighted graphs

Image and edge-weighted graph

For applications to image analysis

- V is the set of pixels
- E corresponds to an *adjacency relation* on V, (e.g., 4- or 8-adjacency in 2D)
- F is a "gradient" of I: The altitude of u, an edge between two pixels x and y, represents the dissimilarity between x and y
 - F(u) = |I(x) I(y)|.

Regional minima



Definition

A subgraph X of G is a minimum of F (at altitude k) if:

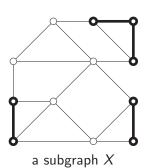
- X is connected; and
- k is the altitude of any edge of X; and
- the altitude of any edge adjacent to X is strictly greater than k

Watershed in edge-weighted graphs

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

19/36

Extension



Definition (from Def. 12, (Ber05))

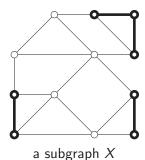
Let X and Y be two non-empty subgraphs of G

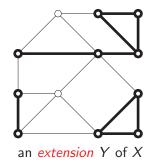
■ We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

20/26

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Extension





Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G

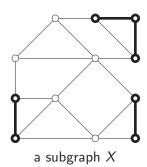
■ We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

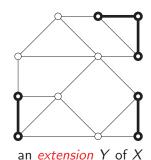
Watershed in edge-weighted graphs

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

20/36

Extension





Definition (from Def. 12, (Ber05))

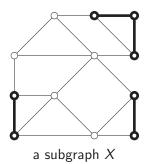
Let X and Y be two non-empty subgraphs of G

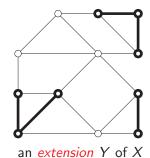
■ We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

20/36

Extension





Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G

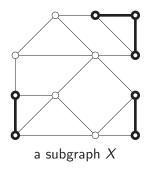
■ We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

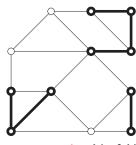
Watershed in edge-weighted graphs

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

20/36

Extension





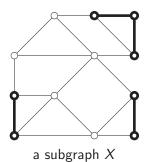
an extension Y of X

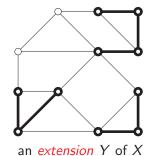
Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G

■ We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

Extension





Definition (from Def. 12, (Ber05))

Let X and Y be two non-empty subgraphs of G

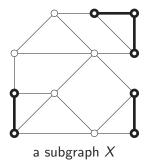
■ We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

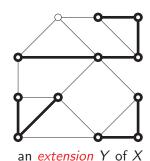
Watershed in edge-weighted graphs

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

20/36

Extension





Definition (from Def. 12, (Ber05))

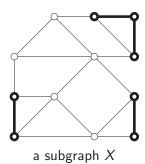
Let X and Y be two non-empty subgraphs of G

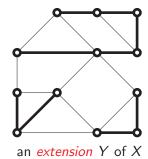
■ We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

20/36

Extension





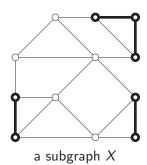
Definition (from Def. 12, (Ber05))

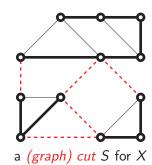
Let X and Y be two non-empty subgraphs of G

• We say that Y is an extension of X (in G) if $X \subseteq Y$ and if any component of Y contains exactly one component of X.

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Graph cut





Watershed in edge-weighted graphs

Definition (Graph cut)

Let X be a subgraph of G and $S \subseteq E$, a set of edges.

• We say that S is a (graph) cut for X if \overline{S} is an extension of X and if S is minimal for this property

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Watershed cut

■ The church of Sorbier
(a topographic intuition)

Definition (drop of water principle)

The set $S \subseteq E$ is a watershed cut of F if \overline{S} is an extension of M(F) and if for any $u = \{x_0, y_0\} \in S$, there exist $\langle x_0, \dots, x_n \rangle$ and $\langle y_0, \dots, y_m \rangle$, two descending paths in \overline{S} such that:

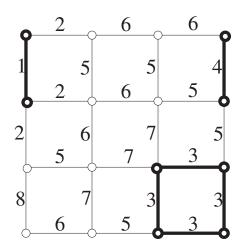
- 1 x_n and y_m are vertices of two distinct minima of F; and
- **2** $F(u) \ge F(\{x_0, x_1\})$ if n > 0 and $F(u) \ge F(\{y_0, y_1\})$ if m > 0

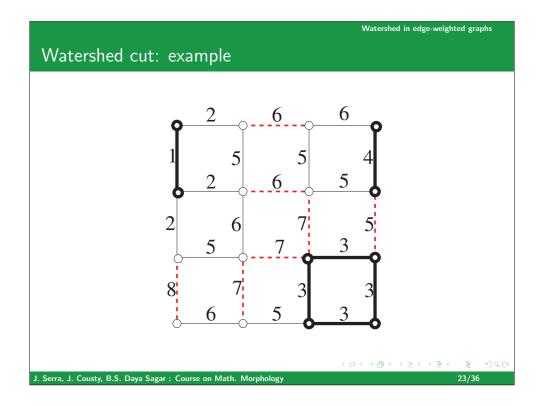
J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

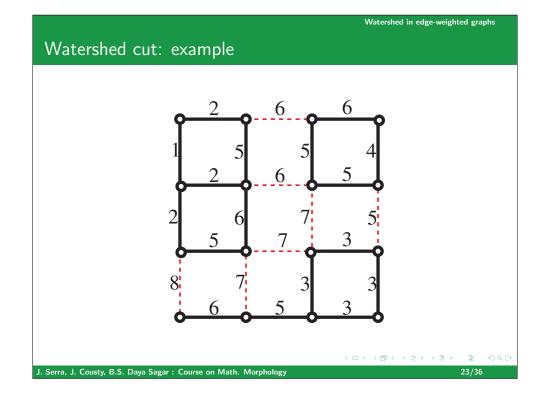
22/36

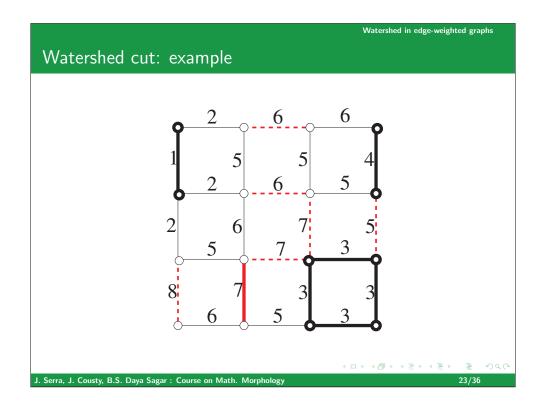
Watershed in edge-weighted graphs

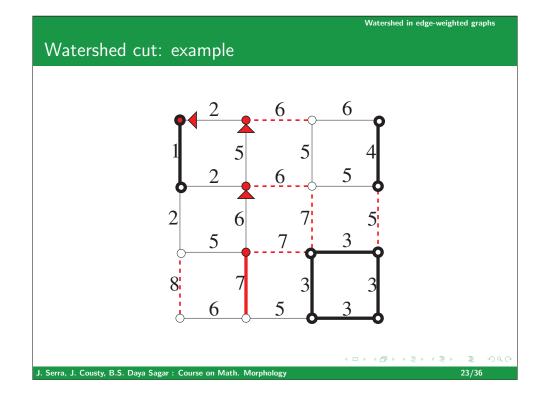
Watershed cut: example

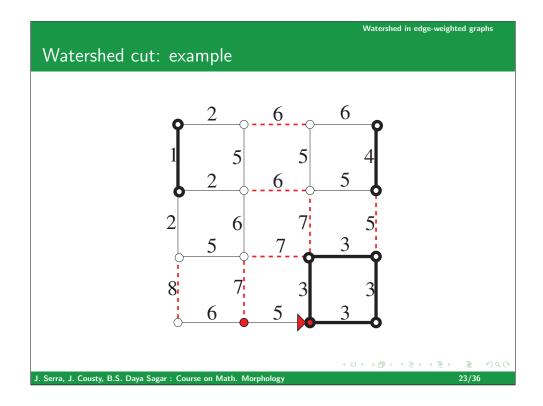


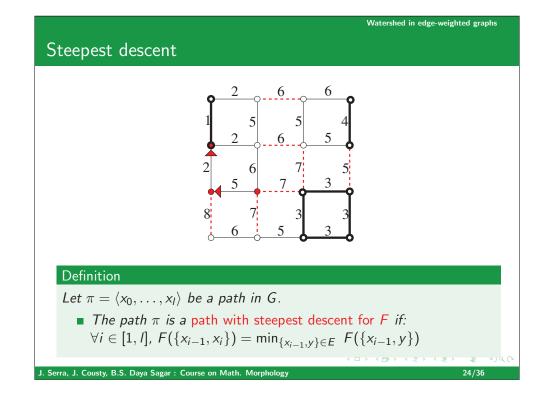












Catchment basins by a steepest descent property

Definition

- Let S be a cut for M(F), the minima of F
- We say that S is a basin cut of F if, from each point of V to M(F), there exists, in the graph induced by \overline{S} , a path with steepest descent for F

(ロ) 《레》 《토》 《토》 - 토 - 쒸오()

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

25/36

Watershed in edge-weighted graphs

Catchment basins by a steepest descent property

Theorem (consistency)

■ An edge-set $S \subseteq E$ is a basin cut of F if and only if S is a watershed cut of F

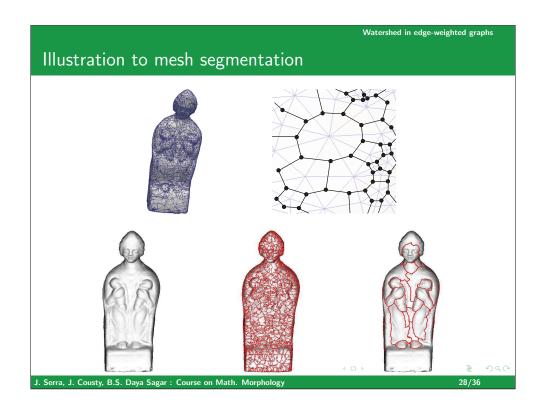
Illustration to grayscale image segmentation

4 D > 4 D > 4 E > 4 E > E 900

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

27/36

Illustration to grayscale image segmentation Watershed in edge-weighted graphs Illustration to grayscale image segmentation J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 27/36



Watershed optimality?

Watershed in edge-weighted graphs

Problem

- Are watersheds optimal segmentations?
- Which combinatorial optimization problem do they solve?

Relative forest: a botanical intuition

A tree (Lal Bagh)

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

30/36

Watershed in edge-weighted graphs

Relative forest: a botanical intuition

Cuting the roots yield a forest of several trees

- -

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

30/36

Relative forest: a botanical intuition

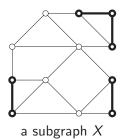
Roots may contain cycles

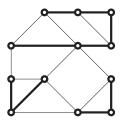
J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

30/36

Relative minimum spanning forest: an image intuitition Cut forest spanning regions Lisera, L. Cousty, B.S. Dava Sagar: Course on Math. Morphology.

Relative forest





Watershed in edge-weighted graphs

a forest Y relative to X

Definition

Let X and Y be two non-empty subgraphs of G. We say that Y is a forest relative to X if:

- \blacksquare Y is an extension of X; and
- 2 any cycle of Y is also a cycle of X

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

32/36

Watershed in edge-weighted graphs

Minimum spanning forest

■ The weight of a forest Y is the sum of its edge weights i.e. $\sum_{u \in E(Y)} F(u)$.

Minimum spanning forest

■ The weight of a forest Y is the sum of its edge weights i.e. $\sum_{u \in E(Y)} F(u)$.

Definition

- We say that Y is a minimum spanning forest (MSF) relative to X
 - lacktriangle if Y is a spanning forest relative to X and
 - if the weight of Y is less than or equal to the weight of any other spanning forest relative to X

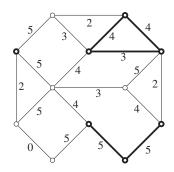
<ロ > < 回 > < 回 > < 巨 > く 巨 > し 至 と り へ 〇

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

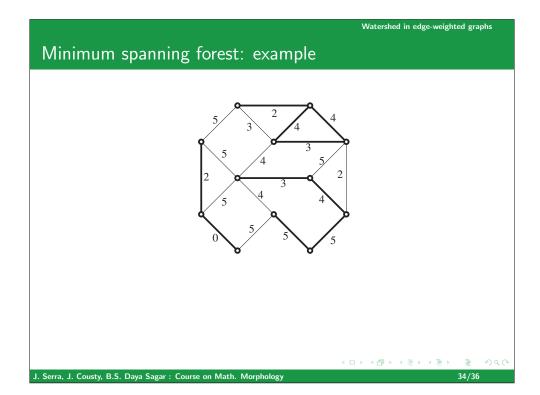
33/36

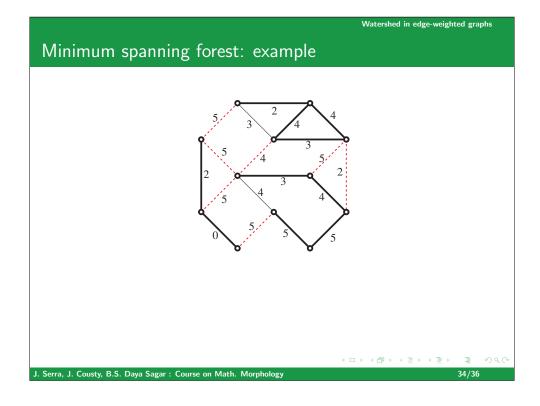
Watershed in edge-weighted graphs

Minimum spanning forest: example

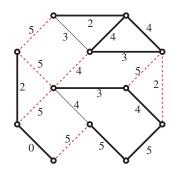


101481111111111





Minimum spanning forest: example



■ If Y is a MSF relative to X, there exists a unique cut S for Y and this cut is also a cut for X;

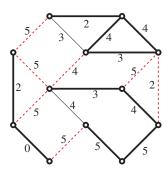
4□ > 4Ē > 4Ē > 4Ē > € 990

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

34/36

Watershed in edge-weighted graphs

Minimum spanning forest: example



- If Y is a MSF relative to X, there exists a unique cut S for Y and this cut is also a cut for X;
- In this case, we say that S is a MSF cut for X.

4 D > 4 D > 4 E > 4 E > E 994

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

34/36

Watershed optimality

Theorem

■ An edge-set $S \subseteq E$ is a MSF cut for the minima of F if and only if S is a watershed cut of F

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

35/36

Watershed in edge-weighted graphs

Minimum spanning tree

■ Computing a MSF ⇔ computing a minimum spanning tree

Minimum spanning tree

- Computing a MSF ⇔ computing a minimum spanning tree
- Best algorithm [CHAZEL00]: quasi-linear time

(ロ) 《레》 《토》 《토》 - 토 - 쒸오()

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

36/36

Watershed in edge-weighted graphs

Minimum spanning tree

- Computing a MSF ⇔ computing a minimum spanning tree
- Best algorithm [CHAZEL00]: quasi-linear time

Problem

Can we reach a better complexity for computing watershed cuts?

Minimum spanning tree

- \blacksquare Computing a MSF \Leftrightarrow computing a minimum spanning tree
- Best algorithm [CHAZEL00]: quasi-linear time

Problem

Can we reach a better complexity for computing watershed cuts?

A morphological solution

■ To know the answer, come back after the coffee break

(ロ) (回) (目) (目) (目) (O) (O)

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

36/36