

1) Call **increasing binary criterion** any mapping $c: \mathcal{P}(E) \rightarrow \{0,1\}$ such that:

 $A \subseteq B \implies c(A) \leq c(B)$

2) With each criterion *c* associate **the trivial opening** $\gamma_{T}: \mathcal{P}(E) \to \mathcal{P}(E)$

$$\gamma_{\rm T}({\rm A}) = {\rm A}$$
 if $c({\rm A}) = 1$
 $\gamma_{\rm T}({\rm A}) = \emptyset$ if $c({\rm A}) = 0$

3) By generalizing the geodesic case, we will say that γ^{rec} is a reconstruction opening according to criterion *c* when :

 $\gamma^{\rm rec} = \vee \{\gamma_{\rm T} \gamma_{\rm x}, {\rm x} \in {\rm E} \}$

 γ^{rec} acts independently on the various components of the set under study, by keeping or removing them according as they satisfy the criterion, or not (*e.g. area, Ferret diameter, volume.*).

Geodesy et Connections

Curiously, the answer to these questions depends on properties of symmetry of the operators. A mapping $\psi : \mathcal{P}(E) \to \mathcal{P}(E)$ is *symmetrical* when

 $\mathbf{x} \subseteq \boldsymbol{\psi} \left(\mathbf{y}
ight) \quad \Leftrightarrow \quad \mathbf{y} \subseteq \boldsymbol{\psi} \left(\mathbf{x}
ight)$

for all points x,y de E.

I Cousty RS Day

• *Theorem* : Let ψ : $\mathcal{P}(E) \to \mathcal{P}(E)$, and let $x \in E$, $A \in \mathcal{P}(E)$. Then the limit iteration

$$\gamma_{x}(A) = \bigcup \{ \psi_{A}^{(n)}(x), n > 0 \}$$

considered as an operation on A, is a **point connected opening** if and only if ψ is an extensive and symmetrical dilation.

Note that the starting dilation ψ does not need itself to be connected!

Math. Morphology II 3

ISI, Univ. Paris-Est

An Example

Initial image : « Joueur de fifre », by E. MANET Markers : hexagonal alternated filters, (non self-dual)

Initial image, 83.776 pp flat zones : 34.835

R S. Dava Saga

Marker $\phi_1 \gamma_2$ flat zones : 53.813

ISI, Univ. Paris-Est

Marker $\gamma_1 \phi_2$ flat zones : 53.858

Course on Math. Morphology II. 6

Duality for Functions If 0 and *m* stand for the two extreme bounds of the gray axis T, then the • set complement operation is replaced by its function analogue $f \rightarrow m - f$ and we have for levelling Λ $m - \Lambda (m - \mathbf{f}, m - \mathbf{g}) = \Lambda (\mathbf{f}, \mathbf{g})$ (1) which means that f, $g \rightarrow \Lambda(f, g)$ is *always* a self dual mapping. In addition, if g derives from f by a self-dual operation, *i.e.* g = g(f) with m - g(m - f) = g(f)(2) (*e.g. convolution, median element*), then levelling $f \rightarrow \Lambda(f, g(f))$ is self-dual. Observe that rel.(2) is distinct from that of invariance under complement $\mathbf{g}(\mathbf{m} - \mathbf{f}) = \mathbf{g}(\mathbf{f})$ which is satisfied by the module of the gradient, or by the extended extrema, for example, and which does not imply self-duality for $f \rightarrow \Lambda(f)$.

