Quiz 1

(1) Is $d(x,y) = \frac{|x-y|}{1+|x-y|}$ a metric on \mathbb{R} ?

Solution: Clearly $d(x, y) \ge 0$ and d(x, x) = 0. If d(x, y) = 0, then |x - y| = 0 $\Rightarrow x = y$. Now for $x, y, z \in \mathbb{R}$, then $|x - z| \le |x - y| + |y - z|$ and so $|x - z| \le |x - y|(1 + |y - z|) + |y - z|(1 + |x - y|) + |x - y||y - z||x - z|$. So,

$$\begin{aligned} &|x-z|(1+|x-y|)(1+|y-z|)\\ &\leq &|x-y|(1+|y-z|)+|y-z|(1+|x-y|)+|x-y||y-z||x-z|\\ &+|x-z|[|y-z|+|x-y|(1+|y-z|)]\\ &\leq &|x-y|(1+|y-z|)+|y-z|(1+|x-y|)\\ &+|x-z|[|x-y|(1+|y-z|)+|y-z|(1+|x-y|)] \end{aligned}$$

This implies that

$$d(x,z) \le d(x,y) + d(y,z).$$

(2) Let $a \neq b$ be two points in a metric space X. Prove that there is a $\delta > 0$ such that $N_{\delta}(a) \cap N_{\delta}(b) = \emptyset$.

Solution: Let r = d(a, b) > 0. Take $\delta = r/2$. Then for $x \in N_{\delta}(a)$, $d(x, b) \ge d(a, b) - d(a, x) > r/2 = \delta$. Thus, $N_{\delta}(a) \cap N_{\delta}(b) = \emptyset$.

(3) Let (X, d) be a metric space and $Y \subset X$. Define ρ by $\rho(a, b) = d(a, b)$ for all $a, b \in Y$. If U is an open set in the metric space (Y, ρ) , then show that there is an open set V in (X, d) such that $U = V \cap Y$.

Solution: Since U is an open subset of Y, for each $x \in U$ there is a $\delta_x > 0$ such that $N_{\delta_x}(x,Y) \subset U$. So, $U = \bigcup_{x \in U} N_{\delta_x}(x,Y)$. Let $V = \bigcup_{x \in U} N_{\delta_x}(x,X)$. Then V is an open set in X and $V \cap Y = \bigcup_{x \in U} (N_{\delta_x}(x,X) \cap Y) = \bigcup_{x \in U} N_{\delta_x}(x,Y) = U$.

- (4) Let *E* be a subset of a metric space *X*. Show that $E^0 = \overline{E^C}^C$. **Solution:** $x \in E^0 \Leftrightarrow N_{\delta}(x) \subset E$ for some $\delta > 0 \Leftrightarrow N_{\delta}(x) \cap E^c = \emptyset$ for some $\delta > 0 \Leftrightarrow x \notin \overline{E^C}$.
- (5) Determine all open subsets and compact subsets in a discrete metric space.

Solution: Since $N_1(x) = \{x\}$, all subsets are open. Let K be any compact subset. Then since $K = \bigcup_{x \in K} \{x\}$ and $\{x\}$ are all open, there are $x_1, \dots, x_k \in K$ such that $K = \{x_1, \dots, x_k\}$. Thus, K is a finite set. Since finite subsets are compact, we get that finite subsets are the only compact sets.