
Mid-Semester Exam Analysis 1 Time 3:00hrs Total Marks 40
Answer any five questions, each question is worth 8marks

1. Let (an) and (bn) be sequences converging to a and b respectively. Prove that

(i) an + bn → a + b and ran → ra for any r ∈ R,

(ii) (an) is a bounded sequence.

2. Let (xn) and (yn) be bounded sequences. Prove that lim(−xn) = −limxn and

limxn + limyn ≤ lim(xn + yn) ≤ limxn + limyn

≤ lim(xn + yn) ≤ limxn + limyn.

Solution: It is easy to see that − supx∈E x = infx∈E −x, we have infk≥n−xn =
− supk≥n xn, hence

lim inf −xn = sup
n

(− sup
k≥n

xn) = − inf
n

sup
k≥n

xn = − lim sup xn.

We first prove lim sup xn+lim inf yn ≤ lim sup(xn+yn) ≤ lim sup xn+lim sup yn.
Now supk≥n xk + yk ≤ supk≥n xk + supk≥n xk, hence letting n →∞, we get that

lim sup(xn + yn) ≤ lim sup xn + lim sup yn.

This also implies that

lim sup xn ≤ lim sup(xn + yn) + lim sup(−yn) = lim sup(xn + yn)− lim inf yn

hence
lim sup xn + lim inf yn ≤ lim sup(xn + yn).

Now we also have

lim inf −xn + lim sup−yn ≤ lim sup−(xn + yn) ≤ lim sup−xn + lim sup−yn

hence

− lim sup xn − lim inf yn ≤ − lim inf(xn + yn) ≤ − lim inf xn − lim inf yn

hence

lim inf xn + lim inf yn ≤ lim inf(xn + yn) ≤ lim sup xn + lim inf yn.

1



3. (i) If (an) is a sequence and r is a limit point of (an), then show that there is a
subsequence (akn) of (an) such that akn → r.

(ii) If (an) is defined by

a1 = 0, a2m =
a2m−1

2
a2m+1 =

1

2
+ a2m

for any m ≥ 1. Find lim inf an and lim sup an.

Solution: a2 = 0, a3 = 1/2, a4 = 1/22, a5 = 1
2

+ 1
22 . We first claim that

a2m =
∑m

k=2
1
2k and a2m+1 =

∑m
k=1

1
2k for all m ≥ 2. Claim is true for m = 2.

Suppose for some m ≥ 2, a2m =
∑m

k=2
1
2k and a2m+1 =

∑m
k=1

1
2k . Then a2m+2 =

a2m+1

2
=

∑m+1
k=2

1
2k and a2m+3 = 1

2
+ a2m+2 = 1

2
+

∑m+1
k=2

1
2k =

∑m+1
k=1

1
2k . Thus by

induction the claim is true for any m ≥ 2.

This proves that a2m = (1− 1
2m+1 )− 1

2
and a2m+1 = (1− 1

2m+1 ). This proves that
|am| ≤ 1 and a2m < a2m+1 for all m.

For any n ≥ 1, supk≥n ak = sup2k+1≥n a2k+1 and hence lim sup an = lim sup a2m+1 =
lim a2m+1 = 1 and similarly we can show that lim inf an = 1

2

4. (i) Prove that limn→∞ n
1
n = limn→∞(n− 1)

1
n = 1.

Solution: Put xn = (n − 1)
1
n − 1 and yn = n

1
n − 1. Then n(n−1)

2
x2

n ≤ n − 1

andn(n−1)
2

y2
n ≤ n, hence xn ≤

√
2
n

and yn ≤
√

2
n−1

. Thus, xn → 0 and yn → 0.

(ii) Prove that every Cauchy sequence converges.

5. (i) If |an| ≤ cn for all n and
∑

cn converges, prove that
∑

an also converges.

(ii) Let (ai) be a decreasing sequence of non-negative numbers. Then prove that∑∞
n=1 an converges if and only if

∑∞
n=0 2ka2k converges.

6. (i) If the sequence of partial sums of
∑

an is bounded and (bn) is a decreasing
or increasing sequence converging to zero, prove that

∑
anbn converges.

(ii) If
∑

an converges and (bn) is a bounded monotonic sequence, prove that∑
anbn converges.

Solution: (i) is proved in the class if (bn) is decreasing. Suppose (bn) is increas-
ing. We know that bn → sup bn = 0. Hence bn ≤ bn+1 ≤ 0. So, −bn ≥ −bn+1

and −bn → 0. By Theorem proved in the class,
∑

an(−bn) converges, hence∑−an(−bn) =
∑

anbn also converges. For (ii). Since
∑

an converges, sequence
of partial sums of

∑
an is bounded. Since (bn) is monotonic and bounded,

bn → b ∈ R. Now (bn − b) is monotonic and bn − b → 0. By (i),
∑

an(bn − b)
converges. By basic properties, we have

∑
ban also converges. This proves that∑

anbn =
∑

(an(bn − b) + ban) also converges.
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7. (i) Find the radius of convergence of the following series

1

3
+

1

5
z +

1

32
z2 +

1

52
z3 +

1

53
z4 +

1

53
z5 + · · ·

Solution: an = 1
3n/2+1 if n is even and an = 1

5
n+1

2
if n is odd.

For n ≥ 5,

sup
k≥n

|ak| 1k =

{
a

1
n
n n is even

a
1

n+1

n+1 n is odd

since when n (≥ 5) is odd,

5
n+1

2 < 3
n+1

2
+1.

This implies that lim sup a
1
n
n = 1√

3
. Thus, the radius of convergence is

√
3.

(ii) Let (an) be a sequence. Define pn = |an| + an and qn = |an| − an. Prove
that

(a)
∑

pn and
∑

qn converge if and only if
∑

an converges absolutely;

(b) if
∑

an and
∑

pn converge, then
∑

an converges absolutely.

Solution: If
∑

an converges absolutely, then
∑

an converges. Hence
∑ |an| ±

an converges. This implies that
∑

pn and
∑

qn converge.

suppose
∑

pn and
∑

qn converge. Then
∑ pn+qn

2
=

∑ |an| converges. Thus,∑
an converges absolutely.

If
∑

an and
∑

pn converge, then
∑

pn − an =
∑ |an| converges, hence

∑
an

converge absolutely.
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