Mid-Semester Exam Analysis 1 Time 3:00hrs Total Marks 40 Answer any five questions, each question is worth 8marks

- Let (a_n) and (b_n) be sequences converging to a and b respectively. Prove that
 (i) a_n + b_n → a + b and ra_n → ra for any r ∈ ℝ,
 (ii) (a_n) is a bounded sequence.
- 2. Let (x_n) and (y_n) be bounded sequences. Prove that $\underline{\lim}(-x_n) = -\overline{\lim}x_n$ and

$$\underline{\lim} x_n + \underline{\lim} y_n \le \underline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \underline{\lim} y_n \le \overline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \overline{\lim} y_n$$

Solution: It is easy to see that $-\sup_{x\in E} x = \inf_{x\in E} -x$, we have $\inf_{k\geq n} -x_n = -\sup_{k\geq n} x_n$, hence

$$\liminf_{n} -x_n = \sup_{n} (-\sup_{k \ge n} x_n) = -\inf_{n} \sup_{k \ge n} x_n = -\limsup_{k \ge n} x_n.$$

We first prove $\limsup x_n + \limsup y_n \le \limsup x_n + y_n \le \limsup x_n + y_n \le \lim x_n + \lim x_n + \lim x_n + y_n$. Now $\sup_{k \ge n} x_k + y_k \le \sup_{k \ge n} x_k + \sup_{k \ge n} x_k$, hence letting $n \to \infty$, we get that

 $\limsup(x_n + y_n) \le \limsup x_n + \limsup y_n.$

This also implies that

$$\limsup x_n \le \limsup (x_n + y_n) + \limsup (-y_n) = \limsup (x_n + y_n) - \liminf y_n$$

hence

$$\limsup x_n + \limsup y_n \le \limsup (x_n + y_n).$$

Now we also have

 $\liminf -x_n + \limsup -y_n \le \limsup -(x_n + y_n) \le \limsup -x_n + \limsup -y_n$

hence

 $-\limsup x_n - \liminf y_n \le -\lim \inf (x_n + y_n) \le -\lim \inf x_n - \liminf y_n$

hence

 $\liminf x_n + \liminf y_n \le \liminf (x_n + y_n) \le \limsup x_n + \liminf y_n.$

- 3. (i) If (a_n) is a sequence and r is a limit point of (a_n) , then show that there is a subsequence (a_{k_n}) of (a_n) such that $a_{k_n} \to r$.
 - (ii) If (a_n) is defined by

$$a_1 = 0, \quad a_{2m} = \frac{a_{2m-1}}{2} \quad a_{2m+1} = \frac{1}{2} + a_{2m}$$

for any $m \ge 1$. Find $\liminf a_n$ and $\limsup a_n$.

Solution: $a_2 = 0$, $a_3 = 1/2$, $a_4 = 1/2^2$, $a_5 = \frac{1}{2} + \frac{1}{2^2}$. We first claim that $a_{2m} = \sum_{k=2}^{m} \frac{1}{2^k}$ and $a_{2m+1} = \sum_{k=1}^{m} \frac{1}{2^k}$ for all $m \ge 2$. Claim is true for m = 2. Suppose for some $m \ge 2$, $a_{2m} = \sum_{k=2}^{m} \frac{1}{2^k}$ and $a_{2m+1} = \sum_{k=1}^{m} \frac{1}{2^k}$. Then $a_{2m+2} = \frac{a_{2m+1}}{2} = \sum_{k=2}^{m+1} \frac{1}{2^k}$ and $a_{2m+3} = \frac{1}{2} + a_{2m+2} = \frac{1}{2} + \sum_{k=2}^{m+1} \frac{1}{2^k} = \sum_{k=1}^{m+1} \frac{1}{2^k}$. Thus by induction the claim is true for any $m \ge 2$.

This proves that $a_{2m} = (1 - \frac{1}{2^{m+1}}) - \frac{1}{2}$ and $a_{2m+1} = (1 - \frac{1}{2^{m+1}})$. This proves that $|a_m| \le 1$ and $a_{2m} < a_{2m+1}$ for all m.

For any $n \ge 1$, $\sup_{k\ge n} a_k = \sup_{2k+1\ge n} a_{2k+1}$ and hence $\limsup_{n \ge 1} a_n = \limsup_{n \ge 1} a_{2m+1} = \lim_{n \ge 1} a_{2m+1} = 1$ and similarly we can show that $\lim_{n \ge 1} \inf_{n \ge 1} a_n = \frac{1}{2}$

- 4. (i) Prove that $\lim_{n\to\infty} n^{\frac{1}{n}} = \lim_{n\to\infty} (n-1)^{\frac{1}{n}} = 1$. **Solution:** Put $x_n = (n-1)^{\frac{1}{n}} - 1$ and $y_n = n^{\frac{1}{n}} - 1$. Then $\frac{n(n-1)}{2}x_n^2 \le n-1$ and $\frac{n(n-1)}{2}y_n^2 \le n$, hence $x_n \le \sqrt{\frac{2}{n}}$ and $y_n \le \sqrt{\frac{2}{n-1}}$. Thus, $x_n \to 0$ and $y_n \to 0$. (ii) Prove that every Cauchy sequence converges.
- 5. (i) If |a_n| ≤ c_n for all n and ∑ c_n converges, prove that ∑ a_n also converges.
 (ii) Let (a_i) be a decreasing sequence of non-negative numbers. Then prove that ∑[∞]_{n=1} a_n converges if and only if ∑[∞]_{n=0} 2^ka_{2^k} converges.
- 6. (i) If the sequence of partial sums of $\sum a_n$ is bounded and (b_n) is a decreasing or increasing sequence converging to zero, prove that $\sum a_n b_n$ converges.

(ii) If $\sum a_n$ converges and (b_n) is a bounded monotonic sequence, prove that $\sum a_n b_n$ converges.

Solution: (i) is proved in the class if (b_n) is decreasing. Suppose (b_n) is increasing. We know that $b_n \to \sup b_n = 0$. Hence $b_n \leq b_{n+1} \leq 0$. So, $-b_n \geq -b_{n+1}$ and $-b_n \to 0$. By Theorem proved in the class, $\sum a_n(-b_n)$ converges, hence $\sum -a_n(-b_n) = \sum a_n b_n$ also converges. For (ii). Since $\sum a_n$ converges, sequence of partial sums of $\sum a_n$ is bounded. Since (b_n) is monotonic and bounded, $b_n \to b \in \mathbb{R}$. Now $(b_n - b)$ is monotonic and $b_n - b \to 0$. By (i), $\sum a_n(b_n - b)$ converges. By basic properties, we have $\sum ba_n$ also converges. This proves that $\sum a_n b_n = \sum (a_n(b_n - b) + ba_n)$ also converges.

7. (i) Find the radius of convergence of the following series

$$\frac{1}{3} + \frac{1}{5}z + \frac{1}{3^2}z^2 + \frac{1}{5^2}z^3 + \frac{1}{5^3}z^4 + \frac{1}{5^3}z^5 + \cdots$$

Solution: $a_n = \frac{1}{3^{n/2+1}}$ if *n* is even and $a_n = \frac{1}{5^{\frac{n+1}{2}}}$ if *n* is odd.

For $n \geq 5$,

$$\sup_{k \ge n} |a_k|^{\frac{1}{k}} = \begin{cases} a_n^{\frac{1}{n}} & n \text{ is even} \\ \frac{1}{a_{n+1}^{\frac{1}{n+1}}} & n \text{ is odd} \end{cases}$$

since when $n (\geq 5)$ is odd,

$$5^{\frac{n+1}{2}} < 3^{\frac{n+1}{2}+1}$$

This implies that $\limsup a_n^{\frac{1}{n}} = \frac{1}{\sqrt{3}}$. Thus, the radius of convergence is $\sqrt{3}$. (ii) Let (a_n) be a sequence. Define $p_n = |a_n| + a_n$ and $q_n = |a_n| - a_n$. Prove that

(a) $\sum p_n$ and $\sum q_n$ converge if and only if $\sum a_n$ converges absolutely;

(b) if $\sum a_n$ and $\sum p_n$ converge, then $\sum a_n$ converges absolutely.

Solution: If $\sum a_n$ converges absolutely, then $\sum a_n$ converges. Hence $\sum |a_n| \pm a_n$ converges. This implies that $\sum p_n$ and $\sum q_n$ converge.

suppose $\sum p_n$ and $\sum q_n$ converge. Then $\sum \frac{p_n+q_n}{2} = \sum |a_n|$ converges. Thus, $\sum a_n$ converges absolutely.

If $\sum a_n$ and $\sum p_n$ converge, then $\sum p_n - a_n = \sum |a_n|$ converges, hence $\sum a_n$ converge absolutely.