
Visualization of Spatiotemporal Behavior of
Discrete Maps via Generation of

Recursive Median Elements

B.S. Daya Sagar, Senior Member, IEEE

Abstract—Spatial interpolation is one of the demanding techniques in Geographic

Information Science (GISci) to generate interpolated maps in a continuous manner

by using two discrete spatial and/or temporal data sets. Noise-free data (thematic

layers) depicting a specific theme at varied spatial or temporal resolutions consist

of connected components either in aggregated or in disaggregated forms. This

short paper provides a simple framework: 1) to categorize the connected

components of layered sets of two different time instants through their spatial

relationships and the Hausdorff distances between the companion-connected

components and 2) to generate sequential maps (interpolations) between the

discrete thematic maps. Development of the median set, using Hausdorff erosion

and dilation distances to interpolate between temporal frames, is demonstrated on

lake geometries mapped at two different times and also on the bubonic plague

epidemic spread data available for 11 consecutive years. We documented the

significantly fair quality of the median sets generated for epidemic data between

alternative years by visually comparing the interpolated maps with actual maps.

They can be used to visualize (animate) the spatiotemporal behavior of a specific

theme in a continuous sequence.

Index Terms—GISci, spatial interpolation, mathematical morphology, thematic

maps, dilation, erosion, interpolation formulas, spatial databases and GIS,

cartography, morphological image representation, visualization techniques and

methodologies, geometrical problems and computations, set theory.

Ç

1 INTRODUCTION

SPATIAL interpolation techniques are used to develop an informa-
tion system that is both scale and time-independent. The concepts
from Geographic Information Science (GISci) provided new
insights to develop information systems in spatial form further
facilitating to visualize the relations between “layered informa-
tion” (see, e.g., [1]). These thematic layers will be prepared—by
computer-assisted mapping or by digitizing manually mapped
information—from various sources of data acquired by remote
sensing, field surveys, demographic surveys, historical records,
etc. The important problem posed to the GIS community is the
integration of temporal data available as snapshots of the ever-
changing phenomena at discrete intervals [2], [3]. By using such
snapshots as input layers depicting thematic information, the way
of mapping algebraic concepts [4] extended with category theory
[5] in order to generate an output layer is explained in [6].
Although [6] is not concerned with the focus of this paper on
spatial interpolations, it is important for the reader to understand
the data representation in layered format and the simple
operations—such as addition, subtraction, and product—involved
in generation of output layers from the temporal data.

In GISci, development of a theme-specific information system

requires spatially represented thematic maps. Such maps,

derived from data acquired either physically or remotely sensed,

are usually stored in layered forms. Each layer represents in

noise-free binary form a theme (foreground) and a no-theme

(background). The layered information is available at different
spatiotemporal scales. A usual limitation is that this information
is not available in a continuous form, i.e., at all spatiotemporal
resolutions. Deriving layers in continuous form from a limited
set of layers (available at discrete intervals) requires a procedure
discussed in this short note.

Predicting a spatial structure between two other spatial
structures—which may be represented at two different spatial
and/or temporal resolutions—evidently requires an interpolation
procedure. “Spatial structure” and “spreading of a phenomenon”
are interchangeably used here, though the phenomenon may
evolve with time. In order to predict and visualize the spatiotem-
poral dynamics of a phenomenon between two time periods, one
needs to generate (interpolate) the intermediary sequence of
phenomena between the known time periods.

In the case of spatial maps, the available interpolation
techniques include kriging [7], shape-based interpolation [8], [9],
and Hausdorff-distance-based interpolation [10], [11], [12], [13],
[14], [15], [16]. Other interpolation methods, to name a few, for
binary objects include elastic dynamic interpolation [17], [18] and
directional interpolation [19]. These algorithms [17], [18], [19] are
computationally and algorithmically expensive and have limita-
tions when dealing with nonconvex objects. While kriging yields
promising results [6], this interpolation technique, in the context of
geoscience and/or GISci, has only been used for spatial sets
(layers). Moreover, kriging techniques are meant for global
transforms that ignore the connectivity of components involved
in the two input sets. To make use of a spatial interpolation
technique in the context of GISci, particularly for spatiotemporal
visualization, one needs to categorize the connected components
(subsets), based on the spatial relationship between the compa-
nion-connected components that belong to two input sets of
different spatial and/or temporal scales. The material that follows
deals with: 1) categorization of the connected components by
means of Hausdorff erosion and dilation distances and 2) use of
the category-specific median-set computation recursively.

The paper is organized as follows: Basic morphological
transformations, Hausdorff distance, and median set computation
between two sets as a global transformation are explained in
Section 2. In Section 3, spatially represented themes with different
categories are identified with reference to logical relationships and
Hausdorff distances. In Section 4, the application of morphologic
interpolation to generate sequential interpolated layered informa-
tion is explained. In the same section, experimental results will be
presented for two cases: small water bodies at two different time
periods and bubonic plague data. Sections 5 and 6 contain a brief
discussion of the potential applications of the proposed framework
in the context of GISci and some other conclusions.

2 BASIC MORPHOLOGIC TRANSFORMATIONS

2.1 Basic Binary Morphologic Transformations

Dilation and erosion are basic mathematical morphologic opera-
tors [16], [20], [21]. These operations can be performed by
employing the Boolean AND the Boolean OR operations [21] on
any object, represented by the set X and its background by the set
complement Xc (e.g., a map in binary form), of the two-
dimensional euclidean discrete space Z2 by means of a (window)
set B. This B is called a structuring element that has a simple
geometrical shape (e.g., disk) and a size (e.g., size of 3� 3)
smaller than the image X. We explain these transformations
including their multiscale versions by following the notations
followed in [20], [21].

The Boolean OR transformation of X by B is equivalent to the
Minkowski set addition � of X by B. This operation that expands
image object is also called dilation of X by B:

X �B ¼� fz : ðBsÞþz \X 6¼ �g ¼
[
y2B

Xþy; ð1Þ
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where Xþy denotes the translation of X along the vector y,

Xþy ¼� fxþ yjx 2 Xg, and Bs ¼� fx : �x 2 Bg is the symmetric of

B with respect to origin.
The Boolean AND transformation of X by Bs is equivalent to the

Minkowski set subtraction � of X by B. This operation that shrinks

the input image object is also called erosion of X by B:

X �B ¼� fz : Bþz � Xg ¼
\
y2B

X�y: ð2Þ

Henceforth, we denote the dilation and erosion of X by B as

ðX �BÞ and ðX �BÞ. These transformations ((1) and (2)) can be

performed by increasing the size of the structuring element to �B

[20], where � ¼ 0; 1; 2; . . . ; N . The reader may want to refer to [16],

[20], [21] for detailed explanations and implementations of these

fundamental morphologic transformations along with their alge-

braic properties.

2.2 Hausdorff Erosion Distance and Hausdorff Dilation
Distance

Let ðXtÞ and ðXtþ1Þ be the nonempty compact sets at two time

instants t and tþ 1. According to [13], the Hausdorff erosion

distance �ðXt;Xtþ1Þ and the dilation distance �ðXt;Xtþ1Þ between

Xt and Xtþ1 are defined, respectively, as

�ðXt;Xtþ1Þ ¼ inff� : ½ðXt � �BÞ � Xtþ1�; ½ðXtþ1 � �BÞ � Xt�g;
ð3Þ

�ðXt;Xtþ1Þ ¼ inff� : ½Xt � ðXtþ1 � �BÞ�; ½Xtþ1 � ðXt � �BÞ�g: ð4Þ

The Hausdorff dilation distance (introduced in [13]) is similar

to the classic concept of “Hausdorff distance” [22]. Algebraically,

these two distances yield metrics which are dual to each other with

respect to the “complement” operation.

2.3 Computation of the Median Set

The median set [13], which is central to the theme of the paper, can

be computed by employing multiscale erosions and dilations along

with certain logical operations. If there exists a bijection between

the sets ðXtÞ and ðXtþ1Þ—such that ðXtÞ is completely contained in

ðXtþ1Þ, ðXt � Xtþ1Þ—the equation for computing the median set

MðXt;Xtþ1Þ between ðXtÞ and ðXtþ1Þ takes the form:

MðXt;Xtþ1Þ ¼
[
��0

ððXt � �BÞ \ ðXtþ1 � �BÞÞ: ð5Þ

If ðXtÞ is only partially contained in ðXtþ1Þ, (5) takes the form:

MðXt;Xtþ1Þ ¼
[
��0

ð½ðXt \Xtþ1Þ � �B� \ ½ðXt [Xtþ1Þ � �B�Þ; ð6Þ

where MðXt;Xtþ1Þ satisfies a more symmetrical property (see

[13], [23]):

� ¼ inff� : � � 0; ðXt � �BÞ 	 ðXtþ1 � �BÞg
¼ �ðXt;MÞ ¼ �ðM;Xtþ1Þ:

ð7Þ

MðXt;Xtþ1Þ is at Hausdorff dilation distance � from ðXtÞ, while

MðXt;Xtþ1Þ is at Hausdorff erosion distance � from ðXtþ1Þ. This

further implies, for the case of ðXt � Xtþ1Þ, that Xt �M � Xtþ1,

and one has strictly �ðXt;MÞ ¼ inf��0f� : M � ðXt � �BÞg and

�ðM;Xtþ1Þ ¼ inf��0f� : ðXtþ1 � �BÞ �Mg.
In what follows, (3)-(7), originally meant for global transforms

that ignore connectivity, will be extended to companion-connected

components Xt
i and Xtþ1

i with index i of sets ðXtÞ and

ðXtþ1Þ—with varied possible spatial relationships, between the

time-dependent themes Xt and Xtþ1(sets), given as categories. We

assume that there exists a bijection between the connected

components Xt
i of set (Xt) and the connected components Xtþ1

i

of set ðXtþ1Þ, for the various indices i. The categorization process

based on spatial relationships between the companion-connected

components of Xt and Xtþ1 would be clear after Section 3.1.

3 LAYERED INFORMATION AS SETS: SPATIAL

INTERPOLATION

A procedure for generating continuous layers starting out from a

limited set of layers is proposed in this section. Limited sets here

refer to two input sets. The sequential steps involved to achieve the

objective include:

1. extraction and description of layered information available
at two different time periods;

2. establishing spatial relationships between the sets and also
between the corresponding subsets of the two main
subsets as well as categorization of the subsets based on
the spatial relationships;

3. computation of the median set between two input sets;
4. generation of a sequence of interpolated sets based on the

two input sets and the median sets thus generated.

3.1 Limited Layered Sets

The layered information depicting a specific phenomenon avail-

able for static systems or for a time-dependent (dynamic) system

can be of three types: ordered, semiordered, or disordered. Let

Xt
1; X

t
2; . . . ; Xt

n and Xtþ1
1 ; Xtþ1

2 ; . . . ; Xtþ1
n be the connected compo-

nents (e.g., lakes) at time periods “t” and “tþ 1” represented on Z2

(Figs. 1a and 1b). For notational simplicity, we denote (Xt) and

(Xtþ1) as sets (layers) and represent the connected components—

Xt
1; X

t
2; . . . ; Xt

n and Xtþ1
1 ; Xtþ1

2 ; . . . ; Xtþ1
n as their subsets. Xt

i and

Xtþ1
i , 8i 2 I, are assumed always to be nonempty and compact. In

what follows, “sets” and “layered data,” as well as “subsets” and

“connected components,” are use interchangeablyd.

3.2 Spatial Relationships between Sets and Their
Categorization

If Xt � Xtþ1 or Xtþ1 � Xt, we say that these sets are ordered sets.

The subsets embedded within each set at a respective time instant

follow the relationship: Xt
i

T
Xt
j ¼ �; 8t; i; j ¼ 1; 2; . . . ; N ; i 6¼ j. We

refer to ðXtÞ and ðXtþ1Þ as a semi-ordered form if subsets of

Xtðresp:Xtþ1Þ are only partially contained in the other set Xtþ1

(respectively, Xt), whereas ðXtÞ and ðXtþ1Þ are considered as
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Fig. 1. Two sets depicted in (a) and (b), respectively, represent corresponding
subsets at two different time instants. These two sets are the inputs to generate a
sequence of interpolated sets. The four categories explained in the text reflect in
the four and five subsets, respectively, from the two input sets (a) and (b).
Corresponding subsets of each panel are indexed with numerals. It should be
noted that blobs with the same index from the two panels (a) and (b) belong to two
different periods. If these two panels are superimposed, blobs with indexes 1 and
2 of panel (b) will be contained in blobs 1 and 2 of panel (a), further indicating that
the spatial relationships fall under Category 1. Spatial relationships between the
blobs with indexes 3 and 4 from the panels (a) and (b), respectively, fall under the
categories 2 and 3, whereas blob 5, in the second panel, that does not possess a
companion subset in the first panel falls under Category 4.
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disordered sets if there arises an empty set while taking the

intersection of ðXtÞ and ðXtþ1Þ (or) of their corresponding subsets.

3.2.1 Description of Categories via Logical Relations

The evolution of subsets of Xt over a period of time depends upon
some controlling factors, for example, temperature is one such
factor of lake evolution. The corresponding subsets Xtþ1 explain
the effect of controlling factor that causes changes in the subsets of
Xt. By assuming that these subsets are lakes at time t and tþ 1,
respectively, embedded in sets Xt and Xtþ1, one can study the
spatial behavior of these subsets by investigating the spatial
relationship between each subset of Xt and its companion subset of
Xtþ1. Let us assume that there exists a bijection between the
connected components Xt

i and Xtþ1
i of sets Xt and Xtþ1,

respectively. Different possibilities, based on the relationships
between the corresponding subsets of two layered data, are
broadly classified in three groups as follows:

1. The categories that satisfy the condition Xt
i \Xtþ1

i 6¼ � for
all i 2 I, respectively, include: a) Category 1 if Xt

i � Xtþ1
i

or Xt
i 	 Xtþ1

i ; Xt
i ¼ Xtþ1

i , ðXt
i \Xtþ1

i Þ ¼ ðXt
i [Xtþ1

i Þ 6¼ �
and b) Category 2 if Xt

i 6
 Xtþ1
i and/or Xtþ1

i 6
 Xt
i ;

Xt
i \Xtþ1

i 6¼ �.
2. The sets Xt and Xtþ1 have the same number of connected

components, but the conditions mentioned in categories 1
and 2 (group I) are not always satisfied in a situation
(Category 3) where Xt

i \Xtþ1
i ¼ �.

3. Assume that Xt has less connected components than Xtþ1

(Category 4), but each Xt
i has a companion Xtþ1

i such that
one of the conditions given in the two categories of group I
is satisfied. In some situations, for example, at the drought
season t, a lake may become empty. Then, one can
complete Xt by adding to it the ultimate erosions of those
connected components of Xtþ1

i that have no companion
sets in Xt.

The four categories under the three groups have been conceived
based on set theoretical and logical relations. The first two
categories fall under group I due to the fact that the intersections
between the connected components of Xt and Xtþ1 yield none-
mpty sets. Category 3 falls under group II as the intersection
between the nonempty compact connected components yields an
empty set, whereas Category 4 of group III has been conceived
under the assumption that the intersection between the connected
component(s), one of which is an empty set, yields the empty set.
Clear distinction between Categories 3 and 4 of groups II and III
can be seen in terms of variations in the properties of connected
components of the companion sets.

For the sake of categorizing the corresponding connected
components of layered data, whether or not they are connected
components, there exist some methods in GISci literature strictly
based on logical reasoning [1], [2], [3], [4], [5].

3.2.2 Description of Categories Using Hausdorff Distances

Connected components with companions between two sets that
belong to two different time instants can be categorized quantita-
tively with respect to their spatial relations and Hausdorff distances.

Category 1. The connected components for which both

�ðXt
i ;X

tþ1
i Þ and �ðXt

i ;X
tþ1
i Þ are zero are considered to be

Category 1 of group I and they follow one of the following three

conditions: 1) Xt
i � Xtþ1

i , 8i 2 I; 2) Xt
i 	 Xtþ1

i ; and 3) ðXt
i \Xtþ1

i Þ ¼
ðXt

i [Xtþ1
i Þ 6¼ �. According to [13] and (3) and (4), �ðXt

i;X
tþ1
i Þ ¼

�ðXt
i ;X

tþ1
i Þ ¼ 0 for these three conditions. By (3), we can explain

why �ðXt
i ;X

tþ1
i Þ yields zero for condition 1) in three steps a)-c):

a) The zeroth-eroded version of Xt
i (i.e., ðXt

i � 0BÞ) would become

a subset of Xtþ1
i ; b) Xtþ1

i would become a subset of Xt
i only after a

finite number of erosions; and c) the minimum of � obtained from

steps a) and b), involved in the erosion process, is zero. According

to (4), for condition 1), the following three steps p)-r) explain why
�ðXt

i ;X
tþ1
i Þ yields zero: p) Xt

i would become a subset of zeroth-
dilated version of Xtþ1

i (i.e., ðXtþ1
i � 0BÞ); q) Xtþ1

i would become a
subset of some finite dilated version of Xt

i ; and r) the minimum of
� obtained from steps p) and q), involved in the dilation process,
is zero. These three-step explanations are also true with
conditions 2) and 3).

Category 2. If both �ðXt
i ;X

tþ1
i Þ and �ðXt

i ;X
tþ1
i Þ are finite

distances (i.e., � 1Þ, then the involved connected components Xt
i

and Xtþ1
i are considered to be of Category 2 of group I. Such

categorized connected components strictly follow the conditions:
1) Xt

i \Xtþ1
i 6¼ � and 2) Xt

i 6
 Xtþ1
i .

Category 3. If only �ðXt
i ;X

tþ1
i Þ yields a finite distance (i.e., �1)

between Xt
i and Xtþ1

i , and there is no possibility to compute
�ðXt

i ;X
tþ1
i Þ—as no degree of erosion of either of the involved

(corresponding) subsets make the eroded set being contained in
the other corresponding subset—then the spatial relationship
between Xt

i and Xtþ1
i is considered to be of Category 3 of

group II. Such category appears only when Xt
i \Xtþ1

i ¼ �.
Category 4. Those nonempty connected components of Xtþ1

that have no companion subsets in Xt and for which neither of the
Hausdorff distances exist are categorized as Category 4 of
group III. To compute recursive median elements under such
unique situation, one can complete Xt by adding to it the ultimate
erosions ðUXtþ1

i 6¼ �Þ of those connected components of Xtþ1
i that

have no companion sets in Xt. The ultimate erosion of Xtþ1
i ,

ðUXtþ1
i Þ, retains the final pixel value just before the last erosion

that changed Xtþ1
i to 0. Note that both �ðXtþ1

i ; UXtþ1
i Þ and

�ðXtþ1
i ; UXtþ1

i Þ yield zero distance according to (3) and (4).
The relationships categorized above are dependent on the

controlling factor. For instance, if the changes in the areal extent of
lakes over a period of time have occurred due to a change in the
temperature regimes, then the geometric evolution of lakes with
evolving temperature fields can be computed by constructing
interpolated layered maps. Table 1 depicts the possible Hausdorff
distances both by erosion and dilation for the different categories.

The categorization of connected components based on spatial
relations between the connected components (Xt

i) and their
companions (Xtþ1

i ) of Xt and Xtþ1 can be done directly by
computing �ðXt

i;X
tþ1
i Þ and �ðXt

i ;X
tþ1
i Þwithout checking for logical

relationships (conditions). Checking the duality property of metrics
�ðXt

i ;X
tþ1
i Þ and �ðXt

i ;X
tþ1
i Þ, the intersections of the sets—between

which these distances need to be computed—must be within the
four categories mentioned above. This validation further provides
a basis: 1) to properly categorize the sets and/or their correspond-
ing subsets and 2) to test the quality of interpolations. In order to
generate a sequence of interpolations between the categorywise
connected components, (5) and (6) form the basis to compute
median elements between Xt

i and Xtþ1
i of sets Xt and Xtþ1.

3.3 Morphologic Interpolation via Median Element
Computation

The median set MðXt;Xtþ1Þ between two sets Xt and Xtþ1,
according to (5) and (6), is a global transform that ignores
connectivity. But, in some situations, it is required to introduce a

380 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

TABLE 1
Categorywise Hausdorff Distances

Authorized licensed use limited to: INDIAN STATISTICAL INSTITUTE. Downloaded on January 11, 2010 at 23:57 from IEEE Xplore.  Restrictions apply. 



bijection between the connected components Xt
i and Xtþ1

i of Xt

and Xtþ1, respectively. In order to better visualize these spatially

evolving subsets, one has to generate interpolated sequences of

subsets at successive time instants in layered forms. The

computation of the interpolated (median) layer MðXt
i;X

tþ1
i Þ

between the layers Xt and Xtþ1 is category-dependent. To get an

intermediary set between Xt and Xtþ1, i.e., X
tþ1

2 , we use (5) and (6).

Categorywise geometric interpretations and median element

computations between the companion-connected components are

illustrated in Figs. 2a and 2b and summarized in (8)-(13).
Category 1 with Xt

i � Xtþ1
i :

M
�
Xt
i;X

tþ1
i

�
¼
[N
�¼0

�
Xt
i � �B

�
\
�
Xtþ1
i � �B

�
: ð8aÞ

Category 1 with Xt
i 	 Xtþ1

i :

M
�
Xtþ1
i ; Xt

i

�
¼
[N
�¼0

�
Xt
i � �B

�
\
�
Xtþ1
i � �B

�
: ð8bÞ

Category 1 with ðXt
i \Xtþ1

i Þ ¼ ðXt
i [Xtþ1

i Þ 6¼ �:

M
�
Xt
i;X

tþ1
i

�
¼ Xt

i ¼ Xtþ1
i : ð9Þ

Category 2 with either Xt
i 6
 Xtþ1

i or Xtþ1
i 6
 Xt

i :

M
�
Xt
i;X

tþ1
i

�
¼
[N
�¼0

��
Xt
i [Xtþ1

i

�
� �B

�
\
��
Xt
i \Xtþ1

i

�
� �B

�
:

ð10Þ

If Xt
i and Xtþ1

i are at least partially connected, such that Xt
i \

Xtþ1
i 6¼ � (e.g., Categories 1 and 2), then all possible median

elements that could be generated through morphologic interpola-

tion between the subsets Xt
i and Xtþ1

i , and also between

recursively generated median sets, are at least partially over-

lapping. A variant of (10) was proposed and discussed in [23].

Since there is a bijection between the connected components Xt
i

and Xtþ1
i of ðXtÞ; ðXtþ1Þ, that fall under Categories 1 and 2 of

Group I, one can prove that

M Xt;Xtþ1
� �

¼
[
8i
M Xt

i ;X
tþ1
i

� �
: ð11Þ

Category 3: Equation (11) does not hold for this category. One can

modify the data by using the construction that results in (12). LetXt
i ,

Xtþ1
i ,CHðXt

i [Xtþ1
i Þ, respectively, be the subsets of ðXtÞ, ðXtþ1Þ and

the convex hull of the union of subsetsXt
i andXtþ1

i . Let these subsets

and/or sets be nonempty compact, and ðXt
i;X

tþ1
i Þ � CHðXt

i [
Xtþ1
i Þ. M1ðXt

i ; CHðXt
i [Xtþ1

i ÞÞ and M2ðXtþ1
i ; CHðXt

i [Xtþ1
i ÞÞ are

median sets, respectively, between Xt
i and CHðXt

i [Xtþ1
i Þ and

Xtþ1
i and CHðXt

i [Xtþ1
i Þ. Such median sets M1 and M2 as well as

the median set Ms ¼MðM1;M2Þ satisfy the following conditions:

1) M1 6¼ �; M2 6¼ �; 2) M1 \M2 6¼ �; and 3) MðM1;M2Þ 6¼ �, so

that:

Ms ¼MðM1;M2Þ ¼
[N
�¼0

½ðM1 \M2Þ � �B� \ ½ðM1 [M2Þ � �B�:

ð12Þ

Category 4: Median elements which under unique situation

arise in Category 4 of group III can be computed as:

M Xt
i;X

tþ1
i

� �
¼
[N
�¼0

UXtþ1
i � �B

� �
\ Xtþ1

i � �B
� �

; ð13Þ

where UXtþ1
i is the ultimate eroded version of Xtþ1

i .

3.4 Sequence of Interpolated Sets

Using the median set, the interpolation sequence can be

obtained recursively. Let Xt
i and Xtþk

i denote the input subsets,

k denotes time gap between two successive maps, and n the

recursion level (always a power of 2) and let X
tþð k2nÞ
i or

MðXt
i;X

tþk
i Þ denote the median element between two input

subsets. The median element between two input companion-

connected components Xt
i and Xtþk

i , respectively, belonging to

the two time instants t and tþ k, is also denoted by

X
tþð k

21Þ
i ¼ Xtþðk2Þ

i . Then, the sequence of interpolated sets, between

two inputs Xt
i and Xtþk

i , is defined as

X
tþ k

21

� �
i ¼M

�
Xt
i;X

tþk
i

�
;X

tþ k
22

� �
i ¼M Xt

i;X
tþ k

21

� �
i

� �
; . . . : ð14Þ

In X
tþðk2Þ
i , the superscript tþ ðk2Þ denotes the intermediary time. For

instance, the two successive maps Xt and Xtþk available are for

years t ¼ 1896 and tþ k ¼ 1898, where the time gap (k) is 2. Then,

the superscript for the median element, generated by taking these

two input maps, should be 1897. The median element at

intermediary time is X
1896þð 2

21Þ
i ¼ Xð1897Þ

i .
The maximum possible number of layers ðNmaxÞ that can be

generated (interpolated) between the input layers (sets) Xt and

Xtþ1 including two input layers is given by

ðNmaxÞ ¼ maxf½minð� : Xtþ1 � ðXt � �BÞÞ�;
½minð� : Xt � ðXtþ1 � �BÞÞ�g:

ð15Þ

4 EXPERIMENTAL RESULTS

The ideas in the previous section have been employed in practical
examples to demonstrate their applicability. To demonstrate the
applications of the Hausdorff distance for understanding the
spatial relations between two discrete maps in general and
between the companion-connected components in particular and
to generate maximum possible sequential maps, we consider
spatially represented 1) small water bodies, retrieved from
remotely sensed data of peak drought ðXtÞ and peak monsoon
ðXtþ1Þ periods as basic inputs and 2) bubonic plague epidemic
data available at annual intervals during the period 1896-1906.

4.1 Case Study on Small Water Bodies

We chose two input synthetic sets, depicting small water bodies
represented by 512� 512 binary pixels, at peak drought period
(Fig. 3a) and peak flood period (Fig. 3b), respectively. These two
input slices fall under Category 1 (see Section 3.2), so we employ
(8a) to generate an interpolated slice (median set) (Fig. 3c).

By using the median set thus generated, a sequence of
interpolated slices is recursively generated, as shown in Fig. 4.
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Fig. 2. (a) Two layers (sets) consisting of subsets with various spatial relationships
shown in the two panels of Fig. 1 are superimposed. (b) Computed median sets
between the corresponding input subsets as shown in Figs. 1a and 1b.
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Including two input slices, a total of five slices are generated as
ðNmaxÞ computed for the two input slices is 5 according to (15).

4.2 Case Study on Spatial Maps of Epidemic

Spatial maps depicting bubonic plague data—available for a

period of 11 years during 1896-1906 at annual intervals, generated

by Yu and Christakos [24]—were chosen. We applied the

methodology explained in the previous case study by choosing

the spatial maps of successive years (Figs. 5a, 5b, 5c, 5d, 5e, 5f, 5g,

5h, 5i, 5j, and 5k) to generate a sequence of interpolated maps

between the sets of maps of successive years to visualize the

spread of epidemics in a continuous manner.
According to the spatial relation between the successive spatial

maps, which are ordered and/or semi-ordered sets, both

�ðXt;Xtþ1Þ and �ðXt;Xtþ1Þ yield �1. Hence, they are classified

as Category 2. According to (7), the � for the first-level median sets

for both successive maps (i.e., Xt and Xtþ1), and also for Xt and

Xtþ2 is computed for all t values (Table 2). This � provides an

estimate of the maximum number of interpolated maps that could

be generated.

4.2.1 Validation of the Middle Elements as Interpolators

For this epidemic case, involving 11 yearly maps for the geographic

spread of bubonic plague in India, while testing for the quality of the

middle element as an interpolator (Fig. 6) we made comparisons

between MðXt;Xtþ2Þ with Xtþ1, for all possible t.
This data further provide the distribution of the rate of spread

in terms of � computed for the data of successive years (Table 2).

The higher the �, the more rapid is the rate of spread. For instance,

between the years 1897 and 1898, 1898 and 1899, 1900 and 1901,

1901 and 1902, as well as between 1902 and 1903, the rates of

spread of plague were significantly faster than in the other periods.

By considering the spatial maps of years 1896 and 1897, a

maximum of six spatial maps could be generated by using (8)-

(14). The interpolated maps computed from 10 pairs of maps at

annual intervals during the period 1896-1906 can be employed to

generate an animation depicting the way the epidemic spread

spatially in a continuous manner (See animation as.avi file at

http://www.isibang.ac.in/~bsdsagar/Epid-animate2.avi). This

procedure paves the way to generate continuous slices between
two input slices recorded at significantly different instants of time.

We found a significantly reasonable quality for the median sets
MðXt;Xtþ2Þ generated for the epidemic data between alternative
years as interpolators. The median sets were tested by comparing
MðXt;Xtþ2Þ with Xtþ1 for all possible t. There obviously exists a
significant match between the interpolated median elements
(Figs. 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, and 6j)—computed between the
real data Xt and Xtþ2 that belong to nine pairs of maps
(Table 2)—and the real data (Figs. 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i,
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Fig. 3. (a) Input slice 1, lakes (in peak drought time) in binary format. (b) Lakes (in
peak flood time) as input slice 2. (c) Median set computed between two input slices
shown in (a) and (b).

Fig. 4. A sequence of interpolated sets (slices) in between two input slices, as
shown in Figs. 3a and 3b. Equations (8a) and (14) are used to recursively
generate the interpolated slices. The layer depicting water bodies with magenta
color is the median set, as shown in Fig. 3c.

TABLE 2
� Values Computed for Xt and Xtþ1 and Xt and Xtþ2

Fig. 5. (a)-(k) Spatial temporal maps that represent the geographic spread of
bubonic plague in India between 1896 and 1906 at intervals of one year [24]. The
11 spatial maps depicting the spread of plague were sequentially used to generate
the maximum possible number of interpolated maps.
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and 5j). For the sake of a better visual comparison, we also

represent the original spatial maps (Figs. 5a, 5b, 5c, 5d, 5e, 5f, 5g,

5h, 5i, 5j, and 5k) and the spatial maps generated according to

MðXt;Xtþ2Þ (Figs. 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, 6j, and 6k) in a

composite way by superimposing them on one another and

assigning gray shade to each original spatial map as well as maps

generated via median set computation (Figs. 7a and 7b).
The Hausdorff dilation and erosion distances were computed

between MðXt;Xtþ2Þ and Xtþ1 for all t values (Table 3) to test the

quality of interpolation. These distances were compared with the

respective Hausdorff dilation and erosion distances of Xt and Xtþ1

(Table 3). The lower the difference between the values of
�½MðXt;Xtþ1Þ; Xtþ1� or �½MðXt;Xtþ1Þ; Xtþ1� and �ðXt;Xtþ1Þ or
�ðXt;Xtþ1Þ is, the higher the degree of matching is. Mismatch
between the interpolated and actual maps is observed in terms of
these values for the interpolated maps for the t values of 1896 and
1901. This slight discrepancy in the values for the years 1896 and
1901 is due to the presence of a few spikes related to the connected
component(s) of one of the two input sets. Other maps in the
sequence have exhibited a significantly higher degree of matching.
For all cases shown in the last four columns of Table 3, the
Hausdorff erosion distances are found to be slightly less than the
Hausdorff dilation distances. However, the fair overall matching
further signifies that the interpolations are valid.

From this comparison of the real and interpolated maps, we
conclude that: 1) There exists a significant match between the real
data and the data generated as median sets and 2) by comparing
MðXt;Xtþ2Þ, one cannot expect to exactly obtain Xtþ1 due to the
fact that � computed for Xt and Xtþ2 may not be exactly the same
as �ðXt;Xtþ1Þ. The success of this interpolation relies on the time
gap (k) between the successive maps considered to generate
median maps. The smaller the (k) is, the higher the approximation
is, and, in turn, the interpolated maps geometrically conform well
to the realistic maps as shown in the results. Better approxima-
tions could be expected when the time interval between two input
maps is smaller. On the contrary, the degree of geometric
similarity between the maps generated via median map computa-
tion and the realistic maps may be poor as in the case of many
other interpolation techniques. For instance, the median map,
obtained by taking the 1896 and 1904 maps (Figs. 5a and 5i) as
two input maps, may not show significant match with the realistic
map of year 1900 (Fig. 5e). This is due to the fact that the time
gap (k) between two input maps is eight years.

5 POTENTIAL APPLICATIONS: A BRIEF DISCUSSION

Prediction is a challenging task to model/simulate/visualize the
general spatiotemporal behavior of any kind of phenomena,
including, to name a few, spreads of rainfall, flood water, lakes,
epidemics, population, cities, elevation structures, temperatures,
hurricanes, soil moisture, earth resistivity, clouds, impact of sea
level rise on the landmass, etc. The reader will certainly find
several different examples where one can apply the framework
shown here. Two specific examples where one can apply the
discussed interpolation technique for discrete spatial and/or
temporal themes are the following:

1. Generation of contours from sparse DEM data: One can
generate intermediary contours to create spatially distrib-
uted elevation regions with dense elevation contours from
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Fig. 7. Superimposed gray-coded (a) original spatial maps and (b) spatial maps
generated via median set computations.

TABLE 3
Hausdorff Distance Values

Fig. 6. (a) Original spatial map of the bubonic plague during 1896. (b)-(j) The first-
level median sets computed for MðXt;Xtþ2Þ for all “t,” ranging from 1896 to 1905.
(k) Original spatial map during 1906. For validation, the maps of Figs. 6b, 6c, 6d,
6e, 6f, 6g, 6h, 6i, and 6j obtained as first-level median sets MðXt;Xtþ2Þ are,
respectively, compared for all “t” with those t of Figs. 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i,
and 5j. These first-level median sets show a reasonable matching with the actual
sets (Figs. 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i, and 5j).
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sparse elevation contours. For this case, successive eleva-
tion regions, which are usually in ordered form, need to be
decomposed via threshold decomposition [25]. Due to the
coarse spatial resolution of the data, the spatial gap
between any two successive threshold decomposed eleva-
tion regions is significantly larger than that of the finer
resolutions. To generate intermediary elevation regions
between such coarser successive elevation regions, one can
follow the median set computation approach that is meant
for Category 1. Kriging is appropriate technique to deal
with the maps of this Category 1. In most of its
applications, simple euclidean distance has been employed
to define the separation between the sample points. It has
been known that euclidean distance is not always an
appropriate metric to define the separation between the
points. But, this framework employs non-euclidean me-
trics, such as Hausdorff erosion and Hausdorff dilation
distances, to develop median set(s).

2. Spatiotemporal behavior of lakes: The geometries of a
group of lakes at (at least) two different time instants are
mapped as layered information and stored in GIS
database. One can employ the aforementioned framework
to analyze how the groups of lakes have geometrically
evolved between the successive time periods. For this case,
maps depicting lakes, retrieved from remotely sensed data
at two significantly staggered time periods (e.g., peak
monsoon time and peak drought time within a year), can
be considered to generate several possible intermediary
layers of lakes. Such a study would provide insight to the
spatiotemporal organization of the lakes.

6 CONCLUSIONS

The recursive generation of interpolated layers (sets), in between
two input slices and/or median sets thus generated, is a challenge
in the context of Geographic Information Sciences. Morphologic
interpolation via median set computation is one of the ways to deal
with spatial interpolation. We propose a framework to describe the
spatial relations between the corresponding subsets of two input
sets. Four possible spatial relationships between the corresponding
subsets are categorized. This categorization is done based on both
by logical relationships and Hausdorff distances. Mathematical
morphologic transformations are employed to: 1) measure the
Hausdorff erosion and dilation distances between the correspond-
ing subsets in particular, and between the input sets in general and
2) compute a sequence of interpolated slices. Results have been
demonstrated on synthetic sets, small water bodies in two different
seasons, and also on spatial maps depicting the spread bubonic
plague through 11 years. Further, the quality of median elements
as interpolators were evaluated. This framework that complements
already existing interpolation methods provides potentially valu-
able insights in the context of GISci. Supplemental materials for
this paper are available in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.163.
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