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[1] Cloud fields retrieved from remotely sensed satellite data resemble functions
depicting spectral values at each spatial position (x,y). Segmenting such cloud fields
through a simple thresholding technique may not provide any structurally significant
information about each segmented category. An approach based on the use of multiscale
convexity analysis to derive structurally significant regions from cloud fields is addressed
in this paper. This analysis requires (1) the generation of cloud fields at coarser
resolutions and (2) the construction of convex hulls of cloud fields, at corresponding
resolutions by employing multiscale morphologic opening transformation and half-plane
closings with certain logical operations. The three basic parameters required from these
generated multiscale phenomena in order to accomplish the structure-based segmentation
include (1) the areas of multiscale cloud fields, (2) the areas of corresponding convex
hulls, and (3) the estimation of convexity measures at corresponding resolutions by
employing the areas of cloud fields and areas of corresponding convex hulls. These
convexity measures computed for multiscale cloud fields are plotted as a function of the
resolution imposed owing to multiscale opening to derive a causal relationship. The
scaling exponents derived from these graphical plots are taken as the basis for (1)
determining the transition zones between the regimes and (2) segmenting the cloud fields
into morphologically significant regions. We demonstrated this approach on two different
cloud fields retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS)
data. The segmented regions from these cloud fields possess different degrees of spatial
complexities. As many macroscale and microscale atmospheric fields are classified
according to spatial variability indexes, the framework proposed here would supplement
those existing atmospheric field classification methodologies.
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D13208, doi:10.1029/2007JD009369.

1. Introduction

[2] Clouds are formed through the condensation and
deposition of tiny water droplets and ice crystal and exist
in various shapes and sizes. The understanding of clouds in
spatial-temporal modes has greatly enhanced with the
advent of satellite remote-sensing and computer-assisted
mapping techniques. Many different macroscale and micro-
scale atmospheric fields such as cloud top pressure, cloud
fields, aerosol concentration, and cloud particle effective
radius could be derived from remotely sensed data [e.g.,
Ackerman et al., 1998, and references therein]. Lately,
Moderate Resolution Imaging Spectroradiometer (MODIS)
channels provide researchers with several different data of
land, sea, and atmospheric fields, the characterization of
which has received wide attention through seminal works
[e.g., Inoue, 1987; Rossow, 1989; Gao and Goetz, 1991;
King et al., 1992, 1996; Hutchison and Hardy, 1995; Frey et

al., 1995; Ackerman, 1997]. Several studies address the
topic of the retrieval of zones from cloud fields possessing
both naturally and anthropogenically generated aerosols
with varied concentrations and from cloud particle effective
radius maps via spatial variability tests.
[3] Geophysical fields such as landscapes, rainfall fields,

cloud fields, and fields depicting various macroscale atmo-
spheric fields are spatially heterogeneous to varied degrees.
Such fields can be decomposed into threshold sets to
facilitate characterization in planar forms. For a better
characterization of geophysical fields, in recent decades
several advanced procedures have been proposed and
implemented efficiently. However, many of them are scale
dependent. Scale-dependent parameters are inadequate to
approximately characterize cloud field. After seminal works
by Mandelbrot [1982] and several others, studies related to
the characterization of geophysical fields via fractal analysis
have been significantly refined. Fractal concepts and con-
ventional morphometric analysis offer robust tools and
techniques to characterize geophysical fields further to
explore links with processes involved. The spatial complex-
ities of some of such geophysical fields and/or sets are
quantified [e.g., Rodriguez-Iturbe and Rinaldo, 1997; Sagar
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and Tien, 2004; Sagar and Chockalingam, 2004; Tay et al.,
2005, 2006, 2007].
[4] Atmospheric cloud is one of the important geophys-

ical fields. A cloud can be treated as a surface of highly
time dependent phenomenon. Segmentation of cloud fields
is helpful for understanding in depth the cloud fields’
characteristics. Spatial patterns exhibited by certain macro-
scale atmospheric fields (e.g., cloud fraction, cloud top
pressure, cloud optical depth, column water vapor, and
cloud particle effective radius) as observed from MODIS
satellites are analyzed by Mote and Frey [2006]. Variations
in spatial and spectral phenomena of clouds of various
climatic zones are quantified via three leading principal
components [Huang and Yung, 2005]. K-means cluster
algorithm is used to classify satellite cloud scenes, over
southern Great Plains acquired during the cool seas months
between November and March 1999–2001, into distinct
regions [Gordon et al., 2005]. Using three-dimensional (3-D)
simulations of radiative transport and the independent pixel
approximation (IPA), the characteristics of radiation trans-
port in inhomogeneous clouds are studied [Zinner et al.,
2006].
[5] From a physical view, a cloud field is an aggregation of

cloud ice, cloud water, and aerosols. All these parameters
within a cloud make a cloud field possess brightness values
distributed heterogeneously. If the brightness values of a cloud
field are distributed homogeneously across all the spatial
coordinates, simple thresholding technique is the choice for
segmenting such a cloud field. However, the brightness values
of realistic cloud fields are heterogeneously distributed. For
segmenting cloud fields properly, simple thresholding techni-
ques have the two following limitations: (1) in no way would
morphologic constitution be considered, and (2) choice of
threshold gray values is highly arbitrary.
[6] Shape-based segmentation of clouds has hitherto

received little attention. In view of this, we opine that the
segmentation of cloud into regions of morphologic signif-
icance would provide a new insight, which would be a step
forward. Regions within a cloud can be classified/catego-
rized according to their general morphological constitutions
and furthermore could be linked according to their potential
to yield precipitation.
[7] Characterization schemes include methods to derive

properties of cloud surface roughness. Such schemes would
be of use to quantify behaviors of time-dependent properties
of cloud fields undergoing dynamic evolution. Segmenta-
tion based on structural and/or textural variations of clouds
through multiscale convex analysis is addressed in this
paper to derive zones of morphologic significance from a
cloud field. We consider cloud fields retrieved from MODIS
RGB color composites.
[8] We propose a procedure for segmentation of cloud

field via multiscale morphological convexity analysis,
which is popular in shape description analysis [e.g., Serra,
1982]. Stepwise procedures and the importance of each
procedure are given as follows.

1.1. Generation of Cloud Fields and Convex Hulls at
Multiple Scales

[9] Multiscale gray scale opening transformation is ap-
plied on a cloud field to generate coarsened versions of the

cloud field at 100 different resolutions, and computation of
their corresponding convex hulls is done by employing half-
plane closings. By performing increasing degrees of open-
ing transformation, which is similar to generating a cloud
field at coarser resolutions, one can observe the transition
zones that demarcate the boundaries between the morpho-
logic regimes at crossover scales.

1.2. Convexity Measures

[10] Areas of cloud fields and corresponding convex hulls
across all the scales are used to estimate multiscale convex-
ity measures. Convexity measure, in other words, cloud
density, is defined as the ratio between the areas of the cloud
field and its corresponding convex hull. This convexity
measure is clearly resolution dependent, and it characterizes
spatial heterogeneity of cloud fields. By assuming that the
brightness values are distributed homogeneously within a
cloud field, the convexity measures across all scales would
be highly uniform. However, in a cloud field where bright-
ness values are heterogeneously distributed, which is quite
common in nature, the rates of change in the convexity
measure differ significantly across scales. Hence, resolu-
tion-dependent convexity measures are estimated for a
cloud field, to derive an appropriate basis to segment the
cloud fields.

1.3. Determination of Morphologic Regimes

[11] Convexity measures are plotted as functions of scale
parameter (i.e., radii of structuring element employed to
generate multiscale clouds through opening transformation).
This graphical relationship between convexity measure and
scale parameter is taken as the basis for determining the
transition zones between the two distinct, successive mor-
phologic regimes. For a better understanding, a set and a
schematic cloud field and their corresponding convex hulls
are illustrated in Figures 1a–1f with an explanation in
section 2 along with cloud data specifications. The cloud
fields observed at transition zones (or) at crossover scales
are further employed to segment the cloud field into
morphologically significant zones.
[12] We note that this geometric approach can be applied

directly on the gray level image, instead of the general
method where the image has to be first transformed into two
colors, black and white only. Hence, loss of information in
the binarization process of the input function can be
avoided. This multiscale convexity analysis based cloud
segmentation depends on gray values’ arrangement rather
than on gray values’ ranges. This procedure is stable and
can be generalized to segment the cloud fields irrespective
of the dynamic ranges of gray values. This convexity
analysis based segmentation procedure provides results that
are independent of spatial and spectral resolutions as
regimes between the crossover scales do not change signif-
icantly with changes in spatial and/or spectral resolutions.
[13] This paper includes MODIS cloud data specifica-

tions (section 2), basic morphological transformations
needed to develop a framework (section 3), generation of
cloud field at multiple resolutions and the convex hull
estimation using half-plane closing (section 4), area esti-
mation of a gray scale image and its corresponding convex
hull (section 5), empirical relationships between various
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parameters and discussion (section 6), and concluding
remarks (section 7).

2. Data Used and Their Specifications

[14] Moderate Resolution Imaging Spectroradiometer
(MODIS) data are the ideal data source for resource and
environmental remote-sensing monitoring on the regional
scale [Song et al., 2004]. We consider two cloud images

(Figures 2a and 2c), belonging to regions situated between
the spatial coordinates 60�–74�E, 20�–28�N and 150�–
162�W, 2�–10.5�N, respectively, acquired through MODIS
(http://modis-atmos.gsfc.nasa.gov/IMAGES/index.html).
Figure 2a was acquired on 30 June 2006 (Day 181) at
1510 UTC with a size of 851 � 621 pixels, while Figure 2c
was obtained on 28 May 2007 at 2355 UTC with a size of
797 � 512 pixels. The original images are in true color
(bands 1, 4, and 3 for red, green, and blue channels,

Figure 1. (a) A threshold set decomposed from a synthetic cloud function, (b) convex hull of a
threshold set shown in Figure 1a, (c) a synthetic cloud function consisting of 10 gray levels, which can be
decomposed maximally into 10 threshold sets, (d) 3-D representation of synthetic cloud function, shown
in Figure 1c, where x, y depict spatial coordinates and z represents corresponding gray levels at respective
x, y spatial coordinates, (e) convex hull of synthetic cloud function shown in Figure 1c, and (f ) 3-D
representation of convex hull shown in Figure 1e.
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respectively). The images are then converted to gray scale
functions f(x,y) (multilevel signals) with 8 bits/pixel. Thus
the values for f (x,y) vary from 0 to 255, with value 0
representing black and value 255 representing pure white
(an ideal case); values in between 0 and 255 (i.e., 1–256)
denote shades of gray which range sequentially from dark
gray to lighter gray shades. A true color image is a 24-bit
image consisting of 8-bit images, for red (R), green (G), and
blue (B) planes, respectively. As processing of a 24-bit
image is computationally highly expensive, a 24-bit true
color image is converted into a 8-bit gray scale image.
Processing a 8-bit image is straightforward and is acceptable
in remotely sensed data analysis studies. The corresponding
histograms of Figures 2a and 2c are shown in Figures 2b
and 2d, respectively. It is observed that most of the pixel
values are distributed either toward dark gray to black or
toward light gray to white, with a peak value at 255 (white)
in Figure 2b. This can be explained from Figure 2a such that
a large patch of seemingly thick white cloud constitutes the
middle of the image.
[15] Convex hull construction for both threshold set and

function is illustrated in Figure 1. Figures 1a and 1c depict
the synthetic forms of threshold cloud set and cloud
function, respectively. Typical convex hulls of threshold
set and cloud function are shown in Figures 1b and 1e,
respectively. It is obvious that a starfish-like set (Figure 1a)
possesses a polygon-like convex hull (Figure 1b). It is also

evident that the convex hulls act as supersets of their
corresponding input information. In turn, the areas of
convex hulls are greater than or equal to their corresponding
functions (sets). In the synthetic cloud function (Figure 1c),
it is conspicuous that there are 10 gray levels, and such a
function can be decomposed into a maximum of ten
threshold sets. Such decomposed sets possess their bound-
aries in rather contorted forms. In the convex hulls of such
function, it can be seen that the decomposed threshold sets
possess smooth boundaries maintaining convexities. The
function-like image and its convex hull (Figures 1c and 1e)
are also represented in 3-D forms (Figures 1d and 1f). The
construction of convex hulls is mathematically explained in
later sections.

3. Methodology

[16] In this section, we briefly discuss (1) basic gray scale
morphological transformations, (2) half-plane closing, and
(3) convex hull construction.

3.1. Basic Morphological Transformations

[17] Mathematical morphology [Serra, 1982] is originally
based on set theory, where sets represent objects in an
image. The sets (or binary images) in question are repre-
sented as white (or black, depending on convention) pixels
at the (x,y) coordinates in the image, defined in 2-D discrete

Figure 2. (a) Isolated Moderate Resolution Imaging Spectroradiometer (MODIS) cloud (cloud-1),
(b) histogram of Figure 2a, (c) isolated MODIS cloud (cloud-2), and (d) histogram of Figure 2c. Refer to
text for the spatial and time details of clouds acquired by MODIS satellites.
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space Z2. Mathematical morphology deals with transform-
ing sets or functions according to certain transformation
rules with reference to a probing rule, also called structuring
element. Basic morphologic transformations considered in
this investigation include erosion, dilation, opening, and
closing [Serra, 1982]. Morphological operations can also
be extended to a gray scale image, which is represented as a
function [Sternberg, 1986;Maragos, 1989]. Here, at the (x,y)
coordinates of a pixel, it is assigned a value corresponding to
its associated discrete gray level value, f (x,y). In this paper,
we focus on application of gray scale morphological trans-
formations rather than on applying binary morphologic
transformations. Hence, we avoid explaining binary morpho-
logic transformations.
[18] Gray level image f(x,y), an array containing digital

values at each (x,y) spatial coordinate, is defined as a finite
subset in Z2. The range of these values depends on the bit/
pixel that is considered. For the following discussion, we
deal with the digital image (function) of the form f (x,y) and
structuring element B. Structuring element B considered is
flat, rhombic in shape, symmetric about origin, and of
primitive size 3 � 3 (e.g., Figures 3a–3c). Gray scale
morphological dilation and erosion transformations are
defined, respectively, as

f � Bð Þ x; yð Þ ¼ max
i; jð Þ2B

f x� i; y� jð Þf g; ð1Þ

f 
 Bð Þ x; yð Þ ¼ min
i; jð Þ2B

f xþ i; yþ jð Þf g; ð2Þ

where � and 
 denote dilation and erosion, respectively.
Erosion transformation replaces the central values of
neighborhood images with the minimum gray values within
the neighborhood; whereas dilation transformation replaces
the central values within the neighborhood image by the
maximum value within the neighborhood. Hence, these two
transformations are dual to each other, as long as the sizes of
the neighborhood images are the same. Erosion makes the
image darkened, while dilation makes the image brightened.
The dilation (erosion) transformation of f by B (a primitive,
flat, symmetric structuring element) computes maxima
(minima) in function by moving B across the function
(e.g., Figures 3a–3c). These two transformations are
explained illustratively in Figures 3a and 3b. From
equations (1) and (2), it is obvious that erosion is the
duality of dilation, because eroding the foreground pixels is
equivalent to dilating the background pixels [Serra, 1982].
Dilation expands an object in question, while erosion
shrinks the object. The two possible combinations of
dilation and erosion operations result in opening and
closing operations, which are used for smoothing purposes.
Opening of f by B is achieved by first eroding f and then
dilating the result with B. Closing is the reverse of opening,
where dilation of f by B is performed first, followed by
erosion with respect to B. These two nonlinear morpholo-
gical transformations are as follows:

f o Bð Þ ¼ f 
 Bð Þ � B½ ; ð3Þ

f � Bð Þ ¼ f � Bð Þ 
 B½ ; ð4Þ

Figure 3. (a–c) Basic gray scale morphological transformations, where 
, �, and o denote
morphologic erosion, dilation, and opening, respectively. Erosion, dilation, and opening of a function of
size 7 � 7 transformed by means of a flat structuring element of size 3 � 3 that is symmetric about origin
and rhombic in shape.
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where o and . denote opening and closing, respectively.
Opening (e.g., Figure 3c) tends to eliminate particular image
details smaller than B; thus it is able to remove noise and
smooth the boundaries from the inside, while closing fills
holes in objects, connects small breaks, and smoothes the
boundaries from the outside. Furthermore, we employ these
transformations (equations (3) and (4)), to generate a function
at multiple scales, where the size (scale) characteristic will be
imposed on B as (B � B � B . . .� B = nth size of B), as
multiscale opening and closing at scale n = 0, 1, 2, . . .. These
multiscale transformations are as follows:

f o nBð Þ ¼ f 
 nBð Þ � nB½ ; ð5Þ

f � nBð Þ ¼ f � nBð Þ 
 nB½ : ð6Þ

Multiscale opening of scale n is expressed as erosion of
image f by B for n number of times followed by dilation
with the same B for n times. In contrast, multiscale closing
of scale n is defined as dilation of f by B for n times
followed by erosion with B for n times. In this work,
closings by several half planes are required essentially to
construct convex hull of the function. With closing (either
half-plane closing or general closing to obtain convex hull),
holes within a cloud would be filled, small breaks would be

connected, and overall the complex cloud field would be
converted into a rather smooth cloud field. To explain this
further, closing of a complex cloud field generates a rather
smoothed version of cloud field. The degree of smoothing
depends upon the size of structuring element considered to
perform closing. In order to convert an image that is
spatially heterogeneous into spatially rather homogeneous,
in other words convex, we need to perform a transformation
to construct convex hull of the image. By constructing a
convex hull, one needs to make sure that holes are filled,
small breaks are connected, and boundaries are smoothed.

3.2. Half-Plane Closing

[19] Half-plane closing by left-vertical half plane is
explained in Figures 4a–4g. Figure 4a is a subimage of
the synthetic image shown in Figure 3a. The reason for
choosing this subimage is to explain the half-plane closing
with fewer translations. To transform a function via closing
by left-vertical half plane (shown as a dark line) in the
forward direction, half plane is moved to the first column of
the function. Each gray value in that column coinciding
with the half plane is evaluated to find out the maximum
values. The first translation involved replacing all the values
in that column with a maximum value if such a value is not
less than the value in the previous translation. This is a
recursive process until the last column in that direction.

Figure 4. (a–f) Sequential steps involved in obtaining successive five translations (Figures 4b–4f) of a
function of size 5 � 5 shown in Figure 4a, via left-vertical half plane to achieve half-plane closing of the
function, and (g) half-plane closing obtained by left-vertical half plane of a function shown in Figure 4a.
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Once all the columns of the function in left-right direction
are translated via left-vertical half plane, it is called closing
of function by left-vertical half plane and is denoted by
[fpq

+( f )]. Similarly, by considering right-vertical half plane
in the direction right to left from the rightmost column, the
values are translated until the leftmost column to generate
closing function by right-vertical half plane. This process is
known as closing of function by right-vertical half plane,
denoted by [fpq

�( f )]. In a similar fashion, closings of the
function by other half planes are generated by changing the
directions. For better comprehension, in section 3.3, we
show the process of generating closings by half planes of
eight directions on a function represented in an array of size
7 � 7. Figures 4a–4f and 5a–5r further explain the
construction of a convex hull.

3.3. Convex Hull Construction via Half-Plane Closing

[20] Convex hull of a grayscale cloud field is defined as
threshold superposed smallest convex sets of all possible
threshold sets or level sets [e.g., Sethian, 1999] that could
be decomposed from a cloud field. A threshold set is convex
if and only if the line segment connecting any two pairs of
points of the set is included in the set [Zunic and Rosin,
2004]. The gray scale convex hull of a synthetic cloud field
(Figure 1c) represented in gray scale form is illustrated in
Figure 1e. Convex hull of a cloud field can also be
constructed directly by computing the point-wise minimum
L between the closings obtained by half planes in all
possible directions (e.g., Figures 5j–5q). This can be done
to avoid computing the convex hulls of threshold sets
decomposed from a cloud field. Construction of the convex
hull of a gray scale image, which is due to Soille [1998], is
explained in the information that follows.
[21] A convex hull is defined as the smallest convex

polygon containing all points in the set. It can be thought of
as being obtained by using a rubber band; extending it
outside all points and then letting it shrink [Wennmyr,
1989]. Construction of a convex hull of a set is a well-
established procedure. However, to construct a convex hull
of a function (e.g., cloud), we adopt the approach proposed
by Soille [1998]. This construction requires two steps:
(1) transformation of a function via closings by using half
planes of all directions and (2) computation of point-wise
minimum L between all versions of half-plane closings.
This two-step process of convex hull (CH( f )) construction
is as follows:

CHðf Þ ¼ �
�

��þ
�
ð f Þ����

�
ð f Þ

h i
; ð7Þ

where (pq
+)c = pq

� denotes two half planes at orientation q
and f(f) represents the closing of a gray scale image f. For
better comprehension, we demonstrate this two-step
approach to generate convex hull by considering a
synthetic discrete cloud function of size 7 � 7 (Figure 3a).
Figures 5a–5h illustrate the half planes of eight different
directions with a function. These eight directions include
vertical half planes of right and left sides, horizontal half
planes of lower and upper sides, and also diagonal half
planes of top left, bottom right, top right, and bottom left
sides. Figures 5j–5q show closings of f obtained by eight
different half planes shown in Figures 5a–5h, respectively.
Figures 5j–5m show half-plane closing by left-right vertical

planes and upper-lower horizontal planes, accordingly.
Figures 5n–5q represent the closings of another two pairs
of orientation, namely 3p

4
and p

4
. The maximum value of the

column before the first column is considered as zero. By
performing the point-wise minimum (L) among the eight
half-plane closing versions (Figures 5j–5q), the convex hull
is computed (Figure 5r). Note that the precision of the
computed convex hull increases with the number of
directions and converges to the real convex hull of the
image, at the expense of higher complexity and greater
computation time [Soille, 1998].

4. Multiscale Cloud Fields and Their Convex
Hulls

[22] A cloud field is an aggregation of various subimages
(cloud subfields). These subfields have different sizes and
shapes. Increasing degree of multiscaling can be performed
to filter out subfields of increasing sizes. This section deals
with (1) generation of cloud at multiscales using morpho-
logic opening and (2) construction of a convex hull of cloud
by using half-plane closing.

4.1. Multiscale Cloud Generation

[23] In order to generate cloud function at multiple
resolutions and to construct their corresponding convex
hulls, morphological opening (equation (5)) is used. The
cloud fields f (Figures 2a and 2c) under the influence of an
increasing degree of opening are progressively flattened,
mimicking the generation of cloud fields at coarser reso-
lutions. Higher degrees of opening transformation change
cloud field in such a way that the cloud field gets discon-
nected before the entire cloud function vanishes. Figure 6
illustrates selected levels of cloud function transformed via
multiscale opening. Furthermore, in order to investigate the
multiscaling property of MODIS cloud field, we generate
100 ‘‘opened’’ images using multiscale opening operations,
on the basis of equation (5). The scale factor n will vary
from 1 to 100. Note that the opened image f with n = 0 is the
same as f. The structuring element B has the shape of a disc
and is bounded, convex, symmetric, and contains the origin.
For viewing the 100 pairs of ‘‘opened’’ images and their
corresponding convex hulls, refer to Figure S1 in the
auxiliary material.1 We show that the cloud field evolving
via opening transformation possesses initial and boundary
conditions. These boundary conditions include flattened
cloud and the convex hull of cloud field, respectively. In
order to quantify the cloud field’s morphological changes, we
choose to parameterize the cloud, evolving morphologically
owing to multiscale opening, with convexity measures.

4.2. Construction of Convex Hulls

[24] By following the approach explained on a synthetic
function (section 3.3), the convex hull of a MODIS cloud
image (Figure 2a) is constructed (Figure 7i). Figure 2a is the
input gray scale image, while Figures 7a–7h depict the
closings computed using eight directional half planes.
Figures 7a–7d show closings of f by left-right vertical
planes and upper-lower horizontal planes, accordingly.

1Auxiliary materials are available in the HTML. doi:10.1029/
2007JD009369.
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Figure 5. Ahalf-plane closing of gray scale function f using eight directions. Different half planes of eight
directions are considered to obtain eight half-plane closings. (a–h) Function with half planes of specific
directions. (i) All eight half planes with the function. (j–q) Half-plane closings, obtained by an approach
explained in Figure 4, according to corresponding direction of half-planes shown in Figures 5a–5h.
(r) Point-wise minima of all half-plane closings shown in Figures 5j–5q, yielding convex hull of original
function.
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Figures 7e–7h present the closings of another two pairs of
orientation, namely 3p

4
and p

4
. Finally, the point-wise minima

of Figures 7a–7h result in the gray scale convex hull
(Figure 7i). We note that eight directions are considered in
the computation of Figure 7i. In fact, the same number of
directions is used in the construction of all convex hulls of

corresponding multiscale cloud images with the approach
described above. In Figures 8a–8d and Figures 8e–8h, we
selectively show the gray scale convex hull obtained for the
25th, 50th, 75th, and 100th opened MODIS cloud images
shown in Figures 6a–6h, respectively. It is observed that the

Figure 5. (continued)
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convex hull decreases in size and encompasses smaller
cloud area as the size of structuring element B increases.

5. Estimation of Area of Multiscale Clouds and
Their Convex Hulls and Convexity Measure

[25] In section 4, cloud functions are generated at multi-
ple scales by performing multiscale opening transformation.
The convex hulls of corresponding multiscale cloud func-
tions are constructed. A cloud field possesses a convex hull
that acts as a super set to cloud field, and hence the area of
the convex hull is greater than or equal to its corresponding
cloud field. Area estimation of clouds at multiple scales and

their corresponding convex hulls, so as to compute the
convexity measure, is briefly explained in this section. The
area of cloud function (and also convex hull function) is
the area computed as the sum of the gray values corresponding
to the pixels of all spatial positions within a function. Math-
ematically, the computation of the area is

Að f Þ ¼
X

x;yð Þ f x; yð Þ and A CHðf Þ½  ¼
X

x;yð Þ CH f x; yð Þ½ :

ð8Þ

It is obvious that the areas of multiscale cloud fields at
decreasing resolution, together with areas of their corre-

Figure 6. (a–d) Images of 25 cycles, 50 cycles, 75 cycles, and 100 cycles, respectively, of opened
versions of cloud function shown in Figure 2a. (e–h) Images of 25 cycles, 50 cycles, 75 cycles, and
100 cycles, respectively, of opened versions of cloud function shown in Figure 2c. Refer to Figure S1 for
all the opened versions ranging from 1 to 100.
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sponding convex hulls at decreasing resolutions, are in a
decreasing trend (Figures 9a and 9b). These relationships
are mathematically expressed as (1) A( f) � A( f o 1B) �
A( f o 2B) � . . . � A( f o (N�1)B) � A( f o NB),
(2) A[CH(f )] � A[CH(f o 1B)] � A[CH(f o 2B)] � . . . �
A[CH(f o (N-1)B)] � A[CH(f o NB)], and (3) A( f o nB) �
A[CH(f o nB)], n = 0, 1, 2, . . ., N.
[26] To determine the lost area (probability) distribution

(across the scales to understand the general trend) of
MODIS cloud surface and its convex hull, we employ
equations (9a) and (9b). Equations (9a) and (9b) enable
the computation of probability distribution values [e.g.,
Maragos, 1989] for original cloud pf(r, B) and its convex
hull pCH(f)(r, B), respectively:

pf r;Bð Þ ¼ A forBð Þ � A fo r þ 1ð ÞBð Þ
Aðf Þ ; 0 � r � N ; ð9aÞ

pCHðf Þ r;Bð Þ ¼ A CH forBð Þ½  � A CH fo r þ 1ð ÞBð Þ½ 
A CHðf Þ½  ; 0 � r � N ;

ð9bÞ

where A(f) and A(forB) represent the areas of original cloud
function and the cloud function opened in terms of scale
parameter denoted by radius r of B: A[CH(f)] and
A[CH(forB)] denote the areas of convex hull function of
original cloud function and the convex hull areas of cloud
functions opened by structuring elements of different radii.
Under the influence of opening transformation successively
implemented by increasing the size r of B, the image (f and
in turn CH(f)) tends to lose its area with increasing r of B.
We know that the total area of the image is A(f). The portion
of area that is lost at the opening level by rB from A(f) and in
turn from A[CH(f)] will be reflected in equations (9a) and
(9b) and Figures 9e and 9f. The probability distribution
values computed through equations (9a) and (9b) satisfy the
following relationships: (1) 0 � pf r;Bð Þ; pCHðf Þ r;Bð Þ

� �
� 1,

(2)
PN
r¼0

pf r;Bð Þ ¼ 1, and (3)
PN
r¼0

pCHðf Þ r;Bð Þ ¼ 1.

[27] Clouds are neither flat like sheets nor spherical like
balls for adequately quantifying the degree of regularity. In
fact, their dimensions are more than sheets but less than
spheres. However, their corresponding convex hulls are

Figure 7. Convex hull generation of cloud function (Figure 2a) by half planes, based on the work of
Soille [1998]: (a) left-vertical half plane, (b) right-vertical half plane, (c) upper horizontal half plane,
(d) lower horizontal half plane, (e) left half plane of orientation 3p

4
, (f) right half plane of orientation 3p

4
,

(g) right half plane of orientation p
4
, (h) left half plane of orientation p

4
, and (i) intersection of all half-plane

closings from Figures 7a–7h, resulting in gray scale convex hull of cloud function shown in Figure 2a. It
should be noted that Figures 7a, 7b, 7d, and 7h contain thin gray or black streaks on left, right, bottom,
and top left sides of the panels, respectively.
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rather regular in geometry. For the characterization of
clouds of varied spatial heterogeneities, we consider the
ratio between cloud area and its convex hull area, which
could range between (0, 1) as the area of a convex hull of a
cloud is always greater than or equal to the area of its cloud;
hence this ratio (equation (10)) can never exceed the unity
value. We define multiscale convexity measure CM{forB}

as the ratio of areas under the function A{forB} and its
corresponding convex hull A[CH{forB}]:

CM forBf g ¼ A forBf g
A CH forBf g½  : ð10Þ

The convexity measure 1 of a cloud is valid if and only if
the areas of the cloud and its convex hull are the same (e.g.,

Figure 8. (a–d) Convex hulls of 25th, 50th, 75th, and 100th opened versions of cloud-1 and (e–h)
convex hulls of 25th, 50th, 75th, and 100th opened versions of cloud-2. For convex hulls of opened
versions at all resolutions, generated from cycle 1 to 100, refer to Figure S2 in the auxiliary material.
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flat and spherical clouds, as their convex hulls are also
respectively flat and spherical; under such circumstances,
the areas of such a cloud and its convex hull are equal to one
another). When there are too many perforations in a so-
called connected irregular cloud, then the area of the convex
hull of such a cloud would be much larger than the area of
such a perforated cloud, and its convexity measure will be
close to zero. The cloud surface can be covered with a
blanket-like convex hull, construction of which is explained
in section 4.2, denoted by CH{f(x,y)}. The area under such a
function is also estimated according to equation (8).

[28] Since we are interested in exploring the multiscaling
property of a MODIS cloud field, we decrease the resolu-
tion of Figures 2a and 2c by varying the size of the
structuring element B from 1 to 100. As we perform multi-
scale opening with an increasing degree of opening by
means of increasing the size of B, the process of generating
a function at coarser resolutions is mimicked. Increasing the
degree of multiscale opening converts an image into
smoothed versions. The higher the degree of multiscaling,
the higher the degree of smoothing. Hence, we obtain cloud
images at decreasing resolutions with an increasing degree of

Figure 9. (a) Log-log graph between cloud area and convex hull versus corresponding radius of
structuring element for cloud-1. (b) Log-log graph between cloud area and convex hull versus
corresponding radius of structuring element for cloud-2. (c) Log-log graph of convex hull versus cloud
area for cloud-1. (d) Log-log graph of convex hull versus cloud area for cloud-2. (e) Log-log graph
between the radii of structuring templates and corresponding probability distribution values for cloud-1.
(f) Log-log graph between the radii of structuring templates and corresponding probability distribution
values for cloud-2. (g) Log-log graph between convexity measure with increasing radius of structuring
element for cloud-1. (h) Log-log graph between convexity measure with increasing radius of structuring
element for cloud-2.
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multiscale opening. Specific degrees of multiscale openings
of the clouds (Figures 2a and 2c) are shown in Figures 6a–
6d and 6e–6h, respectively. The areas for the ‘‘opened’’
image and its corresponding convex hull are computed,
according to equation (8). Probability size distribution
values are estimated for both multiscale clouds and their
corresponding convex hulls according to equations (9a) and
(9b). Loss of information, estimated in terms of area change
across scales simulated by means of multiscale opening
transformation, is considered to estimate the probability
size distribution functions for both multiscale cloud function
and corresponding convex hull functions. The relationship
between convexity measure and size of structuring element
B for both considered cloud fields is shown in section 6
along with a discussion.

6. Relationships Between the Areas and
Multiscale Degree, Scale, and Convexity Measure
Across Scales: Results and Discussion

[29] Empirical relationships between the areas and multi-
scale degree, scale and probability values, and scale and
convexity measures are addressed in this section. The two
cloud fields (Figures 2a and 2c), their multiscale clouds
generated via 100 cycles of opening (Figure S1), and their
corresponding convex hulls (Figure S2) generated through
approaches explained in sections 4.1 and 4.2 are considered
for sequential analysis to obtain the morphologic regimes to
appropriately segment the cloud fields. To achieve appro-
priate segmentation process, changes that occur across
multiscale cloud fields and their corresponding convex hulls
are recorded in terms of areas. The areas of multiscale

clouds and their corresponding convex hulls are plotted as
functions of scale, which is imposed owing to structuring
element size on a logarithmic scale (Figures 9a and 9b). It is
obvious that the areas of cloud fields and their convex hulls
at decreasing resolutions are in decreasing trend. The rate at
which the areas are getting reduced with increasing opening
cycles is less in the cloud than in its convex hull. It is also
observed that the areas of multiscale clouds and their
corresponding convex hulls are merging at a point (Figures 9a
and 9b). It is obvious from Figures 9a and 9b that the
multiscale clouds are the subfunctions of corresponding
convex hulls as the areas of the clouds at respective scales
are always less than their corresponding convex hulls’ areas.
Figures 9a and 9b also explain the difference between the
cloud fields and their corresponding convex hulls in terms
of areas that are gradually decreasing with increasing cycle
of opening. At the coarser resolution of cloud, the degree of
variation between the areas of coarser cloud (cloud after
largest cycle of opening) and its convex hull is minimal.
This further supports the fact that the convexity measure is
in increasing trend with increasing cycle of opening. The
larger the cloud area, the larger is its convex hull area. To
further support these statements, we show the relationship
between the areas of the convex hull and its cloud on a log-
log scale (Figures 9c and 9d). For both cloud-1 and cloud-2,
according to this graphical relationship, the areas of cloud
and its convex hull are more or less similar where the area
of cloud function is minimal (less). However, the areas of
convex hulls at finer resolutions, at which the cloud
function obviously possesses more area, are significantly
more than that of the corresponding cloud function. More or
less linear relationships are observed from these plots,
further supporting that the larger the area of cloud field,
the larger its convex hull area.
[30] The log-log graph is plotted for both probability

values of multiscale cloud fields and their convex hulls as
functions of scale parameter r (radius of structuring ele-
ment) (Figures 9e and 9f). The probability distribution
values for a convex hull are always greater than that of
cloud at all scales. Similar trends are observed in the plots
for both cloud and convex hull, further supporting the fact
that these two features are geometrically interdependent.
Similar trends in variations in the probability distribution
values between the cloud and convex hull are observed in
all three regimes marked on Figures 9e and 9f. These graphs
also exhibit that loss of information in cloud and convex
hull across scales is, in general, in decreasing trend. In other
words, greater information is lost as the radius of the
structuring element increases.
[31] We conjecture that the a exponent that can be

observed from CM(f) � [r]a relationship varies with spatial
complexity of cloud fields. In this relationship, r is a
structuring element with radius r ranges between 1 to N,
and a is a piece-wise power law. We hypothesize that this
exponent varies with spatial complexity of cloud function.
Convexity measure is locally scale invariant. There are three
regimes observed that are locally scale invariant. Through
the relationships between (1) radius of structuring element
and probability distribution values for both cloud fields and
corresponding convex hulls (Figures 9a, 9b, and 9e–9h)
and (2) radius of structuring element and areas of multiscale

Figure 9. (continued)
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clouds and their convex hulls, we observed that there exist
three different morphological regimes. The crossover scales/
radii are observed, for cloud-1, at scales or radii of struc-
turing element of 1, 12, 32, and 100, where 1 and 100 are
lower and upper limits.
[32] The basis to properly classify the topological region

of a cloud field appears valid in terms of the relationship
between scale factor (r) and convexity measure relation-
ships (Figures 9g and 9h). In the middle region of the cloud-
1 (Figure 2a) (i.e., 12th cycle of opening to 32nd cycle of
opening), the rate of change in convexity measure across
resolutions is observed more than that of inner and external
portions of cloud field. It is observed from Figures 9g and
9h that the convexity measure does not possess a universal
power law exponent with respect to increasing radius of
structuring element. As a basis to categorize the cloud field,
the convexity measure pattern across scales is thus divided
into three groups (Figures 9g and 9h). We classify Group I
as the convexity measure corresponding to structuring
element from n = 1 to 11, Group II as the convexity
measure extracted with structuring element from n = 12 to
31, and finally Group III as the remaining convexity
measure computed relative to structuring element from n
= 32 to 100. Nevertheless, all groups exhibit an increasing
trend with increasing size of structuring element. In Group
I, the graph shows a rather flat curve, with a slope value of
only 0.0771. This indicates that the rate of increment in
convexity measures is slow at a smaller radius of structuring
element. When we increase the radius of structuring element
from 12 to 31, we obtain a steeper curve with slope value of
0.3446. This means that convexity measure obtained within
this region shows a high rate of change, as compared to
Groups I and III. Owing to logarithmic representation, the
convexity measures for the structuring element between n =
32 and 100 are shown to be ‘‘squeezed’’ in Group III, as
seen in Figure 9g. Even though the graph seems to be
saturated and approaching a specific value, it actually yields
a gradient value of 0.1088. Hence, we can conclude that in
terms of convexity measure, Group II exhibits a higher rate
of change, followed by Group III showing a moderate rate
of change, and lastly Group I giving the slowest rate of
increment, across multiple resolutions. For cloud-2, a sim-
ilar graphical relationship is shown in Figure 9h. The
analysis of this graph provides three morphologic regimes
in the structuring elements’ size ranges: n = 1–11 (Group I),
n = 12–48 (Group II), and n = 49–100 (Group III),
respectively. The rates of change in the convexity measure
across these groups include 0.0204, 0.0509, and 0.2985,
respectively. When convexity measure is plotted as a
function of scale factor (structuring element size), the
graphical relationships have not shown any linear trend.
On the basis of the graphs, we regrouped the cloud field
under morphological evolution into three groups based on
the local slopes (Figures 9g and 9h). Locally, these con-
vexity measures exhibit scale-invariant properties, although
their global trends have not shown any scale-invariance
property. These findings further facilitate a way to segment
the cloud regions into zones of morphologic significance.
These segmented zones can be better linked with various
macroscale atmospheric fields.
[33] To have a view of information loss in cloud field

across multiple resolutions, we generated Figures 10a and

10c on the basis of the segregated phases shown in Figures 9g
and 9h. We note from Figure 9g that the graph of
convexity measures of opened versions of cloud-1 shows
a sudden change at radii 12 and 32 (crossover scales), for
Group II and Group III, respectively. The cloud images at
the 12th cycle, 32nd cycle, and 100th cycle of opening are
converted into binary images by choosing a common
threshold value. These threshold cloud images are super-
posed on one another after coding them with colors for
better visualization (Figure 10a). The boundaries of these
threshold cloud images are superposed on the original
cloud-1 (Figure 2a) for better viewing, and it is observed
that the regions embedded within the segmented zones have
different degrees of spatial homogeneities (Figure 10b).
These classes for cloud-1 and cloud-2 are separated by
choosing an ‘‘opening level’’ of image that changes abrupt-
ly, which can be observed from the graphs (Figures 9g and
9h). The first abrupt change in cloud-2 as depicted from
Figure 9h is at opening level 12 (i.e., when r = 12), and the
second abrupt change could be seen at opening level 49; as
we terminated the iteration of opening at 100th cycle, we
choose opening level 100 as the third threshold opening
level. The images obtained by opening levels 12, 49, and
100 are thresholded by choosing gray value 110. For better
clarity, these thresholded images are color-coded by blue,
gray, and red, respectively. These color-coded segmented
regions are superposed on the thresholded original image,
which is color-coded with green. In fact, this green zone is
the remainder of the cloud after subtracting the three classes
segmented and represented with blue, gray, and red zones.
Superposing the zones (with blue, gray, and red) on the
thresholded original image (depicted with green) yields
Figure 10c. Hence, effectively there are four segmented
zones. This entire process is true to the results shown for the
four zones (Figures 10a and 10c) for cloud-1 and cloud-2,
respectively. The boundaries of these four segmented zones
are also superposed on the original cloud-1 and cloud-2
(Figures 10b and 10d).

7. Conclusion

[34] This paper provides a framework for segmenting
cloud fields on the basis of multiscale convexity analysis.
The criterion to choose multiple regimes is based on the
transition zones that can be observed from the graphs
plotted between the radius of structuring element and the
convexity measure. To retrieve the morphologic regions, we
visualized cloud field at multiple resolutions, via multiscale
morphologic opening. Estimation of convexity measures at
respective scales is done by computing the ratio between the
areas of cloud field and its corresponding convex hull. Prior
to area estimation, we perform multiscale morphological
opening to transform cloud fields retrieved from MODIS
product at multiple scales. Furthermore, convex hulls of
these multiscale cloud fields are constructed by following
half-plane closing approaches. This analysis provides a way
to classify cloud field into regions of prominence in a
quantitative manner. From the results, it is observed that
the segmented regions follow a pattern from a smooth/
compact interior to a rough/broken boundary. This objective
method of smoothing and shrinking the cloud field into a
sequence of embedded regions (sorted by area) is non-
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trivially related to pixel brightness. Through a multiscale
convexity analysis-based approach to segment cloud fields,
one cannot expect the same statistical robustness from
simple thresholding on brightness at the pixel scale. The
approach followed in this study complements the scale-
based methods of quantifying cloud surfaces.
[35] It is shown that through convexity measure of the

cloud, segmentation of the cloud into prominent regions can
be performed. The segmented regions with different con-
vexity characteristics quantified numerically may be prop-
erly related to the region-wise physically retrieved
measurements of aerosol, cloud particle effective radius,
and several other parameters that could be derived from
macroscale and microscale atmospheric fields.
[36] Overall, this paper addresses the problem of seg-

menting cloud fields retrieved from remotely sensed data.
The approach used in this paper is based on computing
convex hulls of multiscale cloud field by using mathemat-
ical morphology and deriving a multiscale convexity mea-
sure. This approach is inherently multiscale, which is
consistent with the turbulent nature of clouds and of many
other atmospheric phenomena. The main finding in this

paper is that, on the basis of the inspection of some key
scaling relations established between scale and multiscale
convexity measures, the two real-world cloud fields are
segmented into three distinct regimes. The number of
regimes depends on the shape-size complexity of cloud.
The higher the number of crossover scales, the higher the
number of regimes that one can segment. Crossover scales
depend on both shape and size complexities of the cloud.
[37] Most of the approach can be automatized except the

determination of crossover scales/structuring element radii
to delineate different regimes, from radii and convexity
measure relationship. The derivation of threshold opening
levels depends on the proper determination of crossover
scales from a log-log graph of convexity measure (CM) and
scale (r). At this stage, crossover scales’ determination is
done interactively. However, this proposed approach has the
second limitation. As a whole, this new approach mitigates
the first limitation. It would be interesting to explore the
algorithms to automatically derive the crossover scales from
the graphs depicted for CM and r. Within each segmented
zone (e.g., within each of three regimes segmented), if one
uses different threshold values instead of just value 128,

Figure 10. (a) Color-coded binarized (by choosing threshold gray level value 128) cloud-1 images at
three threshold-opening cycles superimposed on binarized original cloud-1 color-coded with green,
(b) boundaries of 12th, 32nd, and 100th opened cloud-1 images and thresholded original cloud-1
superimposed on the original cloud image, (c) color-coded binarized (by choosing threshold gray level
value 110) cloud-2 images at threshold-opening cycles superimposed on binarized original cloud-2 color-
coded with green, and (d) boundaries of 12th, 49th, and 100th opened cloud-2 images and thresholded
original cloud-2 superimposed on the original cloud image. Different regions, which are categorized
broadly as inner (red), middle (gray), and two outer (blue and green) regions, depict zones with different
spatial heterogeneities.
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which is chosen arbitrarily here for cloud-1, one can see
subclassification within each segmented zone. Through
such subclassification, perhaps one can distinguish the open
cell convection (e.g., at the top left corner of cloud-2 from
the more closed-cell-like convection at the bottom right
corner).
[38] Further, this approach can be used to assess the

realism/validity of cloud models by comparison between
simulated and real data. It would be worth applying this new
multiscale analysis tool to synthetic data (e.g., fractal shapes
and multifractal fields) with known multiscaling properties
for calibration purpose. Some results obtained through the
application of multiscale analysis, which is essentially based
on binary morphologic transformations, can be seen at
http://www1.mmu.edu.my/�sllim2/. Application of struc-
ture-based segmentation would be useful to partition the
cloud field that consists of cloud ice—cloud water that
possesses different morphologic characteristics. The ap-
proach proposed here (1) groups cloud even in quite chaotic
scenes according to horizontal size of cloud structures (e.g.,
convective cells) and (2) can be foreseen in cloud classifi-
cation to identify different cloud types.
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