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Abstract

In this paper, a speech classifier inspired by the signal subspace approach is developed. A novel signal subspace speech

model is initially obtained via a rank reducing subspace decomposition algorithm that is based on the SVD. Motivated by

the assumption that the speech signal comprises of short term dynamics that are slowly changing, it follows that the signal

subspace of the speech signal is likewise slowly changing. The proposed signal subspace model aims to characterize the

subspace dynamics using a family of subspace trajectories. In particular, each subspace trajectory is a sequence of vectors

that traces the dynamics of a rank-one subspace in time. An assembly of these trajectories, henceforth, specifies the

progression of the embedded signal subspace. To construct the signal subspace classifier, prototype elements in the form of

the signal subspace models are determined for every signal class. A minimum-distance rule with a distance measure that

resembles an energy difference function is subsequently applied in the actual classification task. Simulation of the proposed

signal subspace classifier in an isolated digit speech recognition problem reveals promising results.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Subspace methods in speech signal analysis
commonly relate to the application of the singular
value decomposition (SVD) or its variants to reveal
the principal features of the underlying signal. The
general premise that information in speech signals is
almost completely contained in a rank deficient
subspace of the signal matrix enables the SVD to
function as an analysis tool to abstract the desired
signal subspace. As the measured signal is usually
e front matter r 2006 Elsevier B.V. All rights reserved
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corrupted with additive noise, retaining only the
signal content of the rank deficient signal subspace
lends it a certain noise filtering quality. These ideas
have been extensively researched for speech en-
hancement techniques (e.g., [1–3]). Extension of the
signal subspace approach to coloured noise removal
(e.g., [4,5]) and the evaluation of the subspace-based
speech enhancement for robust speech recognition
(e.g., [6,7]) have also been reported in the literature.
In this paper, we take the signal subspace analysis in
a slightly different direction for a classification
problem.

Speech signals are strictly nonstationary. The
basic assumption that speech signals consist of short
term dynamics that are slowly changing is often
.
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necessary in time domain speech modelling [8,
Chapters 2–3; 9, Chapter 4]. In fact, popular
techniques such as the short-time Fourier transform
(STFT), linear prediction coding (LPC) [10–12], and
cepstral methods [10,13,14], are developed on the
basis that the spectral content is slowly changing
across the entire speech signal. These methods
generally function to specify the relevant acoustic
events in the speech signal in terms of a compact
and efficient set of speech parameters. Building on a
similar assumption, we infer that the signal sub-
space of the speech signal is also slowly changing
coinciding with these short term dynamics. The
proposed signal subspace model is a means to
specify these signal subspace dynamics. A collection
of signal subspace models, each representing a
distinct signal class, establishes the signal subspace
classifier. In particular, the signal subspace classifier
is constructed by means of assembling prototype
elements (in the form of the proposed speech model)
of every signal class and thereafter executing a
minimum-distance rule for a given measure of
dissimilarity. Preliminary results from the simula-
tion of the proposed signal subspace classifier in an
isolated digit speech recognition problem appear
promising.

The rest of the paper is structured as follows: In
Section 2, a brief review on subspace methods
and SVD is presented. Section 3 lays the foundation
of the proposed signal subspace model. Then,
Section 4 develops the actual subspace classification
strategy. Simulation results and discussions are
recorded in Section 5. Finally, Section 6 provides
the major conclusions.
2. Signal model and the SVD

The linear model for the clean speech signal
assumes that each n-dimensional vector s of the
signal can be represented as [2]

s ¼ Hy ¼
Xp

i¼1

hiyi; ppn (1)

where H ¼ ½h1; h2; . . . ; hp� 2 Rn�p is a model matrix
whose columns are orthogonal basis vectors that
span the signal subspace and y ¼ ½y1; y2; . . . ; yp�

T is a
zero mean random coefficient vector. In general, it
is always possible to adequately represent speech
signals using only pon basis vectors, i.e., s 2 RðHÞ
� Rn. Let x denote the noisy measurement vector
such that

x ¼ sþ n, (2)

where n denotes the vector of the noise process. The
noise process is assumed white, zero mean, additive
and uncorrelated with the clean signal.

In practice, one observes and constructs a matrix
X 2 Rn�m of measurements [1,10]. Here, m is the
number of measurement channels and n is the
number of measurements over these channels.
Typically, n is much larger than m. One method to
construct this matrix from a realization consisting
of K samples x1;x2; . . . ;xK is to arrange these
samples into a n�m matrix with Toeplitz structure
[3]

X ¼

xm xm�1 � � � x1

xmþ1 xm � � � x2

..

. ..
. ..

.

xK xK�1 � � � xK�mþ1

2
666664

3
777775, (3)

where the matrix dimension is constrained by
K ¼ nþm� 1. Equivalently, a Hankel matrix
could have been used as both matrix structures are
interchangeable by a simple permutation of col-
umns. Consequently, we have

X ¼ S þN and S ¼ HY , (4)

where S and N are the signal and noise matrices,
respectively, and Y ¼ ½y1; y2; . . . ; ym� 2 Rp�m is the
matrix of coefficients.

The thin SVD (or economy-size SVD) of the
measurement matrix X is given by [15, p. 72]

X ¼ USVT ¼
Xm

k¼1

ukskv
T
k , (5)

where the columns of U ¼ ½u1; u2; . . . ; um� 2 Rn�m

are mutually orthonormal, V ¼ ½v1; v2; . . . ; vm� 2

Rm�m is an unitary matrix and S 2 Rm�m has the
form

S ¼ diagðs1;s2; . . . ;smÞ. (6)

The diagonal elements of S are the singular values of
X and are ordered so that s1Xs2X � � �Xsm. The
columns of U and V are, respectively, called the left

and right singular vectors. The SVD of the
measurement matrix is also useful to describe the
eigendecomposition of the sample correlation ma-
trix Rx defined as [3]

Rx9
1

n
XTX ¼

1

n
VS2VT. (7)
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Under the assumptions that noise is white and
uncorrelated with the clean signal, the row space of
the signal matrix S can be completely recovered
from the measurement matrix X [1]. Specifically, the
p right singular vectors corresponding to the largest
singular values of X are precisely the right singular
vectors of S. An approximation to the reduced
p-rank signal correlation matrix Rs may, therefore,
be obtained as

Rs9
1

n
STS �

1

n

Xp

k¼1

s2kvkv
T
k . (8)

By the SVD, a consistent estimate of the row space
of S, or equivalently, the eigenspace of Rx, can be
obtained from X. This decomposition procedure is
similar, in nature, to a Karhunen–Loeve transform
(KLT) on the noisy measurement vector. For the
rest of the paper, the aforementioned assumptions
are tacitly implied.
3. Subspace modelling

Speech signals are essentially nonstationary and
consist mainly of short term dynamics that are
slowly changing [8, Chapter 2]. The boundaries of
these dynamics generally mark the start and end of
a phoneme, the smallest speech unit. The nonsta-
tionary dynamics present in speech signals almost
invariably necessitates speech processing applica-
tions to work with frames [9, Chapter 4]. The
general supposition that the speech signal can be
reasonably assumed to be stationary over a frame
interval is often an implicit requirement in these
applications. By the same token, we have pursued a
frame-based approach in the analysis; that is, a
running rectangular window is used to acquire the
analysis frames of the speech signal. In particular,
the window is K length and advances every K1

samples. The tth frame would, therefore, consist
of the samples K1ðt� 1Þ þ 1;K1ðt� 1Þ þ 2; . . . ;
K1ðt� 1Þ þ K. There are, in total, T ¼ dðL�

KÞ=K1 þ 1e frames where L is the number of
samples in the speech signal and the operator dxe
returns the smallest integer greater than x. The
samples contained in each frame are, thereafter,
organized into the Toeplitz structure resembling
Eq. (3). Following this procedure, we thus obtain
the set of measurement matrices fX ðtÞ : t 2 NT g ¼

TðxÞ given the samples of signal x. Here, T denotes
the frame operator and Ni is the subset of natural
numbers f1; 2; . . . ; ig.
The underlying assumption that the short term
dynamics are slowly changing makes it possible to
specify the speech signal as a composite of signal
subspace dynamics which we will denote as the
family of subspace trajectories C. Since the row
space of the signal matrix is retrievable from the
measurements, the signal subspace implied hereafter
relates to the row space in particular. Formally, the
subspace trajectory cðtÞ is defined as a vector-valued
function that is nonzero (or active) in some interval
t1ptpt2. Each trajectory describes a particular
sequence of the right singular vectors; collectively,
the family of subspace trajectories characterizes the
entire signal subspace. Two right singular vectors vt

and vtþ1 of successive frames belong to the same
trajectory if jcos�1ðvTt vtþ1Þjpyth, where ythop=4 is
the transition bound. Incidentally, the upper bound on
yth is required to ensure no more than one vector vtþ1

(from the set of orthonormal right singular vectors)
lies within yth of vector vt. The subspace trajectory
decomposition algorithm is described next.

Algorithm 1. Subspace trajectory decomposition
algorithm.
(1)
 Given signal x, construct the set of measurement
matrices fX ðtÞ : t 2 NT g ¼TðxÞ.
(2)
 a. Obtain the set of singular values fsk : k 2

Nmg and the set of right singular vectors fvk :
k 2 Nmg from the SVD of X ð1Þ.

b. For k ¼ 1 to m, set ckð1Þ  skvk.
c. Set I Nm, I

0  ; and M  m.

(3)
 For t ¼ 2 to T, do:

a. Obtain the set of singular values fsk : k 2

Nmg and the set of right singular vectors fvk :
k 2 Nmg from the SVD of X ðtÞ.

b. For k ¼ 1 to m, do:
i. For 8i 2 I, determine yi  jcos

�1

ð
vT

k
ciðt�1Þ

jciðt�1Þj
Þj.

ii. Find y0  mini2Ifyig and i0 arg
mini2Ifyig.

iii. If y0pyth, then set ci0
ðtÞ  skvk and

I0  I0 [ i0. Otherwise set cMþ1ðtÞ  

skvk, I0  I0 [ ðM þ 1Þ and M  

M þ 1.
c. Update I I0 and I0  ;.
(4)
 Construct the family of subspace trajectories
C fcj : j 2 NMg.
The family of subspace trajectories C obtained in
Algorithm 1 consists of trajectories in both the
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signal and noise subspace. It becomes necessary,
therefore, to devise a selection strategy that discards
all but the signal related trajectories of C. In this
respect, we define the energy E of trajectory c 2 C
as the sum of squared norms, i.e.,

EðcÞ ¼
XT

t¼1

kcðtÞk2. (9)

Following the construction of c in Algorithm 1, the
norms of c are also the singular values correspond-
ing to the right singular vectors of the measurement
matrices contained in c. It turns out, therefore, that
the energy function accumulates the eigenvalues
corresponding to the eigenvectors of the sample
correlation matrices in c.

For a given energy ratio Etho1, the smallest
subset C0 � C satisfying the constraintP

c2C0EðcÞP
c2CEðcÞ

4Eth (10)

is denoted the minimal set of subspace trajectories �C.
To construct �C, the trajectories in C are ordered
according to their energy and then picked for �C, in
a descending order of the energies, until the energy
constraint is met.
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Fig. 1. The dominant subspace trajectory of the utterance ‘‘Eight’’, with

according to the convention ‘‘[i: t1–t2] Ei’’ where i denotes the ranking
Algorithm 2. Subspace trajectory selection algo-
rithm.
(1)
10

-54] 

K ¼

orde
Given the family of subspace trajectories
C ¼ fcj : j 2 NMg.
(2)
 For j ¼ 1 to M, compute the energy map
Ej  

PT
t¼1kcjðtÞk

2.

(3)
 Pick the minimal set of indices J � NM such

that
P

k2JEk4Eth

P
l2NM

El .

(4)
 Construct the minimal set of subspace trajec-

tories �C fcj : j 2 Jg.
Fig. 1 shows the dominant subspace trajectory of
the utterance ‘‘Eight’’ and the labelling conventions
used. Figs. 2 and 3 display the subspace trajectories,
ranked in the order of decreasing energies, corre-
sponding to the utterances ‘‘Eight’’ and ‘‘Five’’,
respectively.
4. Subspace classification

4.1. The signal classification problem

Let X denote a signal space that contains all
signals or time series and C ¼ f1; 2; . . . ;Cg be the set
of class labels of C known classes. The central task
of signal classification is the assignment of signals to
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160, K1 ¼ 40, m ¼ 20, yth ¼ 25�, Eth ¼ 0:9. The plot is titled
r.



ARTICLE IN PRESS

10 20 30 40 50

0
10

20
-0.5

0

0.5

[1:9-54] 4438.67

10 20 30 40 50

0
10

20
-0.5

0

0.5

[2:9-54] 3322.35

20 40 60

0
10

20
-0.5

0

0.5

[3:1-72] 870.64

5
6

7

0
10

20
-0.5

0

0.5

[4:5-7] 246.38

5 10 15 20 25

0
10

20
-1

0

1

[5:1-29] 229.00

5
6

7

0
10

20
-0.5

0

0.5

[6:5-7] 218.90

3
3.5

4

0
10

20
-0.5

0

0.5

[7:3-4] 148.45

Fig. 2. Subspace trajectories of the utterance ‘‘Eight’’, with K ¼ 160, K1 ¼ 40, m ¼ 20, yth ¼ 25�, Eth ¼ 0:9.
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Fig. 3. Subspace trajectories of the utterance ‘‘Five’’, with K ¼ 160, K1 ¼ 40, m ¼ 20, yth ¼ 25�, Eth ¼ 0:85.
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classes with strictly defined characteristics, or
equivalently, the mapping X! C. The signal space,
however, is usually overly redundant and as a
preliminary to the actual classification task, a
feature extractor f : X!F is typically employed
to reduce the dimensionality of the signal space. The
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feature space F should essentially contain only
relevant features of the signal under consideration.
The final classification step is the map g :F! C.

The final classification step may be considered as
the map of distinct partitions of F onto some
particular class label, i.e., F is partitioned into
distinct regions fFc, c 2 Cg such that g :Fc ! c.
We may then associate a prototype as the represen-
tative element for the region Fc �F such that an
input x 2 X gets the class label of the prototype to
which x is similar. The notion of similarity is
generally based on a certain distance measure. The
smaller the distance, the higher the degree of
similarity between x and the prototype.
4.2. Subspace classification

To place the signal subspace analysis within the
scope of a signal classification problem, several
similarities have to be drawn. The speech model C
obtained in Algorithm 1 is a mapping of the signal x
onto the row space of its measurement matrices.
This transformation is, in essence, rank reducing
and not invertible since the information contained
in the column space of the measurement matrices is
lost in the decomposition process. Relevant features
of x are subsequently extracted from C by Algo-
rithm 2 and, with that, the noise-like features of x
are removed. The resultant speech model �C is then
taken to be the prototype element of its class. The
two algorithms, therefore, collectively execute the
role of the feature extractor, i.e., �C ¼ f ðxÞ.

For every class c 2 C, let �Cc ¼ fccj : j 2 Jcg be
the prototype element of the class. Given an
unknown signal x0, we desire to classify it into
one of the classes in C. To that end, we define a
distance measure of the form

dðccj ;X Þ9jkccjk � kXccjk=kccjkj, (11)

where X 2Tðx0Þ.

Lemma 1. If x0 is the signal that generates the class

prototype �Cc, i.e., �Cc ¼ f ðx0Þ, then dðccj ;X Þ ¼ 0 for

every ccj 2
�Cc and X 2Tðx0Þ of the same frame.

Proof. Let the SVD of the measurement matrix be
X ¼

Pm
k¼1ukskv

T
k and ccj ¼ scjvcj. Then

Xccj=kccjk ¼
Xm

k¼1

uksk cos fcjk, (12)
where cos fcjk ¼ vTk vcj. The norm of Eq. (12) gives

kXccjk=kccjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1

s2k cos
2 fcjk

s
(13)

since the left singular vectors of X are mutually
orthogonal. If x0 generates �Cc then vcj must be
exactly one of the right singular vectors of X and scj

is the corresponding singular value, i.e., there exists
an l such that vl ¼ vcj and sl ¼ scj. Consequently,
cos fcjl ¼ 1 and cos fcjk ¼ 0 for kal and hence
kXccjk=kccjk ¼ scj ¼ kccjk. &

In a sense, the norm in Eq. (13) may be
interpreted as a measure of the content of X in
ccj. The deviation of this measure from the actual
signal content in ccj gives the desired distance
measure of Eq. (11).

To classify the unknown signal x0, the weighted
average Aw of the distance measure is evaluated
across all trajectories in �Cc, i.e.,

Awð �Cc; x0Þ ¼

P
j2Jc

PT
t¼1wcjðtÞ dðccjðtÞ;X ðtÞÞP
j2Jc

PT
t¼1wcjðtÞ

(14)

One particular choice for the weighting coefficients
w is the norms of the trajectories, i.e., wcjðtÞ ¼

kccjðtÞk. This choice of w tends to bias towards
trajectories with higher signal content. A minimum-
distance rule is subsequently applied to pick the
class label of the prototype most similar to x0.

Algorithm 3. Subspace classification algorithm.
(1)
 Given unknown signal x0 and prototypes
f �Cc : c 2 Cg.
(2)
 For c ¼ 1 to C, set vc  Awð �Cc; x0Þ according
to Eq. (14).
(3)
 Classify x0 according to the minimum-distance
rule, i.e., arg minc2Cfvcg.
5. Results and discussions
This section examines the performance of the
proposed signal subspace classifier as a speech
recognizer in two test cases.

5.1. Isolated digit speech recognition

Speech recordings, at the sampling frequency
10 kHz and with a signal-to-noise ratio (SNR) of
approximately 24 dB, are collected from a pool of
three male speakers. For every digit between 1–9
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and two different utterances of the digit 0, i.e.,
‘‘Zero’’ and ‘‘Oh’’, ten recordings are obtained,
thereby yielding a total of 11� 10 ¼ 110 recordings
per speaker. Next, a recording of each digit is
selected randomly to build the set of class proto-
types according to Algorithms 1 and 2 while the rest
(nine recordings) are used as the testing data. The
signal subspace classifier obtained is then evaluated
according to Algorithm 3 for the testing data with
Table 1

Recognition rate, in percentage (%), and the mean number of

trajectories per subspace prototype for various configurations of

the signal subspace classifier

Classifier Recognition

rate (%)

Number of

trajectories

m ¼ 20, yth ¼ 25�, Eth ¼ 0:9 85.2 28.8

m ¼ 20, yth ¼ 25�, Eth ¼ 0:75 75.1 8.6

m ¼ 20, yth ¼ 25�, Eth ¼ 0:95 85.2 54.4

m ¼ 20, yth ¼ 15�, Eth ¼ 0:9 85.2 67.5

m ¼ 20, yth ¼ 30�, Eth ¼ 0:9 83.8 20.6

m ¼ 16, yth ¼ 25�, Eth ¼ 0:9 81.2 18.7

m ¼ 28, yth ¼ 25�, Eth ¼ 0:9 88.9 75.7

m ¼ 28, yth ¼ 35�, Eth ¼ 0:925 89.6 47.0
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Fig. 5. (a) Performance of the signal subspace classifier, and (b) the mea

dimension m varies (yth ¼ 25�, Eth ¼ 0:9).
the average recognition rate (of the three speakers)
as the yardstick for performance. Following [3], we
have chosen K ¼ 160 and K1 ¼ 40 in our experi-
ment. Main results of the simulation are shown in
Table 1.

The performance of the signal subspace classifier
generally improves as the energy ratio Eth increases
(Fig. 4a). The drawback in increasing Eth, however,
is that more trajectories are produced in the
decomposition procedure (Fig. 4b) and conse-
quently the computation cost is raised. One way
of reducing the trajectory count is by increasing the
transition bound yth. It is observed in our experi-
ments that the performance of the classifier is rather
insensitive to moderate values of yth, i.e.,
15�pythp30�. In contrast, the classifier is highly
sensitive to the row space dimension m. Increasing
m enhances the performance (Fig. 5a) but at the
same time it also elevates the computation cost
(Fig. 5b). In our experiments, we found that setting
m ¼ 20, yth ¼ 25� and Eth ¼ 0:9 produces a classi-
fier (dubbed Sub1) that is low on computation cost
and moderate in performance. If we allow some
compromise on the computation cost, then using
Energy ratio, Eth
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m ¼ 28, yth ¼ 35� and Eth ¼ 0:925 yields a much
improved classifier (dubbed Sub2).

For purposes of comparison, the same experi-
mental setup is repeated for two commonly used
speech recognizers, i.e., the LP-derived cepstral
coefficients (LPCC) recognizer and the Mel-fre-
quency-derived cepstral coefficients (MFCC) recog-
nizer, both implementing dynamic time warping.
Two variants of the LPCC, each using a different
distortion measure, are tested: LPCC1 for the
Euclidean distance and LPCC2 for the cepstral
projection measure [16]. For all three recognizers
tested, a Hamming window ðK ¼ 240;K1 ¼ 80Þ is
applied to the data and 12 cepstral coefficients,
liftered with wliftðkÞ ¼ 1þ 6 sinðpk=12Þ, are retained
as the cepstral vector [8, Chapter 4]. The two LPCC
recognizers achieve 89.2% (LPCC1) and 92.9%
(LPCC2) recognition rate while the MFCC recog-
nizer achieves a moderate 85.2%.

5.2. White noise robustness

The second part of our experiment investigates
the white noise robustness of the proposed classifier.
Artificial stationary white noise is added to the
testing data and the classifier’s performance at
various levels of SNR is recorded [16]. Here, the
SNR is defined on the entire utterance with the
noise power assumed constant throughout the
utterance. It is apparent from the results obtained
(Fig. 6) that the proposed classifiers (Sub1 and
Sub2) are remarkably robust to additive white
noise. This is in contrast to the performance of the
LPCC and MFCC recognizers which deteriorate in
noisy environments. The white noise robustness
of the proposed classifier owes much to the
SNR (dB)
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Fig. 6. Performance of various speech recognizers as SNR varies.
noise filtering quality inherent in subspace-based
methods.

5.3. Implementation issues

Computational load, which is largely due to the
SVD computation, remains an important issue in
subspace processing. The direct application of
frame-to-frame SVD computation is, however,
rarely used in practice. Instead, efficient techniques
which looks into approximating the SVD by
alternative decomposition techniques that are
cheaper computation-wise are more frequently used.
Such approach generally features a mechanism that
updates the estimates at each successive frame.
Some examples are [4,19].

We have not mentioned explicitly how the
parameters m, yth and Eth should be chosen. Raising
either m or Eth generally improves the recognition
rate (Figs. 4a and 5a) but at the expense of increased
computation cost (Figs. 4b and 5b). Choosing Eth

too large, additionally, may cause the subspace
model to overfit the training speech data and
thereby sacrificing robustness. In our work, we
obtain a reasonable compromise between recogni-
tion accuracy and processing time using Sub1 and
Sub2. For yth, it is difficult to ascertain, at this
preliminary stage, how it actually affects the
recognition task. The choice of a larger yth tends
to generate fewer trajectories because there is a
larger tolerance for variation in the right subspace
vectors while a smaller yth generates more trajec-
tories for the opposite reason. Without compromis-
ing too strongly on either the recognition rate or
processing time, the suggested value for yth in either
Sub1 or Sub2 achieves reasonably good results.

5.4. Future work

It is interesting to note that most misclassification
involving the following digits occurs for the follow-
ing cases:1 ‘‘Five’’ as ‘‘Nine’’ (87.9%), ‘‘Nine’’ as
‘‘Five’’ (88.5%) and ‘‘Zero’’ as ‘‘Four’’ (82.8%).
Predictably, these observations reveal that a great
percentage of misclassification occurs in the sets of
digits that are roughly phonetically alike. This is
due, to a large extent, to the absence of a measure of
discrimination in the selection strategy of Algorithm
2. In particular, the ‘‘best representation’’ approach
1The figure in parenthesis denote the percentage of the

particular misclassification over all misclassification of the class.
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taken by Algorithm 2 lacks a proper measure that
evaluates the discriminative quality of the elements
in the prototype set. Citing an parallel in the best-
basis algorithm of [17], the original best-basis
algorithm, which is a best representation realization
of a given time series, has been adapted for
classification problems by integrating discriminative
qualities in the modelling strategy (e.g., [18]). In
view of that, we surmise that the proposed signal
subspace classifier could further be improved by
adopting the same measure.

Extension of the proposed classifier to coloured
noise removal is also possible following the
approach taken by [3,4]. In particular, if the
addictive noise is coloured, a prewhitening trans-
formation is applied to the measurement matrix.
The quotient SVD (QSVD) then replaces the SVD
as a means to extract the signal subspace compo-
nents of the speech signal. Another possible
research direction is the application of the signal
subspace features extracted by the methods pre-
sented here in training hidden Markov model
(HMM) based speech recognizers. Our future work
will address these important issues.

Although the signal subspace classifier is only
comparable in performance to the industry standard
speech recognizers, like the HTK Toolkit [20] which
is based on the HMM, the application of the
proposed subspace classifier in an isolated digit
speech recognition problem is achieved with pro-
mising results.

6. Conclusion

A speech classifier inspired by the signal subspace
approach is proposed in this paper. Class proto-
types are constructed following a subspace decom-
position algorithm that maps a signal or time series
into a family of distinct subspace trajectories and,
thereafter, retains a minimal set of trajectories that
satisfies an energy constraint. The actual classifica-
tion task is accomplished by a minimum-distance
rule that picks the class label of the prototype that
minimizes a particular energy difference function.
Finally, the signal subspace classifier is successfully
simulated in an isolated digit speech recognition
problem with promising results.
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