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Abstract—A speech model inspired by the signal subspace
methods was recently proposed as a speech classifier with modest
results. Fashioned along a “best representation” approach, the
absence of valuable interclass information in the speech model,
however, impairs the ability of the classifier to distinguish be-
tween phonetically alike classes. This letter proposes an improved
classifier that implements interclass information. Specifically, a
measure of the discriminative quality of individual class elements
is defined and determined for all class elements. The discrimi-
nation measures thus obtained are subsequently applied in the
classification procedure. Simulation results of the proposed signal
subspace classifier in an isolated digit speech recognition problem
reveal an improved performance over its predecessor.

Index Terms—Class discrimination information, classification,
speech modeling, speech recognition, subspace methods.

I. INTRODUCTION

THE underlying assumption in signal subspace speech
modeling lies in the premise that speech signals are

strictly nonstationary and consist of short-term dynamics that
are slowly changing [1, Chaps. 2–3], [2, Chap. 4]. In fact, pop-
ular speech processing techniques like the short-time Fourier
transform (STFT), linear prediction coding (LPC) [3]–[5], and
cepstral methods [3], [6], [7] are developed on the basis that
the spectral content is slowly changing across the entire speech
signal. These methods generally function to specify the relevant
acoustic events in the speech signal in terms of a compact and
efficient set of speech parameters.

A signal subspace speech model is a characterization of the
speech signal in terms of its subspace information. The signal
subspace approach to speech processing was originally applied
for speech enhancement techniques (such as [8]–[10]), and it has
only been used recently as a speech classifier [11]. This letter
aims to improve on the latter. The signal subspace classifier in
[11] was generally designed according to a “best representation”
approach, i.e., finding the best fit from within the set of class
prototypes. However, owing largely to the absence of discrim-
inative elements in the speech model, it was inefficient when
separating between phonetically alike classes. In such cases,
it is often necessary to revise the original (best representation)
modeling strategy to include these measures (compare [12] and
[13]). Thus, recognizing the insufficiency of the earlier classi-
fier, the proposed classifier compensates in the same manner.
The performance of the proposed signal subspace classifier is
subsequently tested against its predecessor in an isolated digit
speech recognition problem, and results appear promising.
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The rest of this letter is structured as follows: A brief re-
view on signal subspace modeling and classification is cov-
ered in Section II. Section III develops the key ideas behind
the proposed signal subspace classifier. In particular, a classi-
fication scheme that enables class discrimination information is
introduced. Simulation results and discussions are recorded in
Section IV, and Section V provides the major conclusions.

II. SUBSPACE MODELING

A. Signal Model and the SVD

A measurement matrix is constructed by orga-
nizing samples of the measurement data into a
Toeplitz matrix of the form [8], [10]

...
...

...
(1)

where and the matrix dimension constrained by
. The measurement matrix is typically rank deficient

[8], that is, the actual signal content lies in a signal subspace
of a lower rank, i.e., .

The thin SVD (or economy-size SVD) of the measurement
matrix is defined as [14, p. 72]

where the columns of are mu-
tually orthonormal, is a unitary
matrix, and has the form

The diagonal elements of are the singular values of and are
ordered so that . The columns of and
are, respectively, called the left and right singular vectors.

A least-squares estimate of by a matrix of a lower rank
is

(2)

with the estimation error [14, p. 72]. In
practice, however, there are no definite ways to estimate to ef-
fect (2), as a clearly defined spectral gap is often absent in the
singular spectra due to the stochastic nature of speech signals. It
is nevertheless reasonable to assume that the general quality of
speech is tied to the formants, represented in the singular spec-
trum by the dominant singular values [10]. For the rest of this
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letter, these assumptions are tacitly assumed. The rank-revealing
property of the singular spectrum will be especially useful later
when distinguishing between the various subspaces of .

B. Subspace Decomposition and Selection

A running rectangular window is used to acquire the analysis
frames of the speech signal. The window has length and ad-
vances every samples. The th frame would therefore consist
of the samples .
There are, in total, frames, where

is the number of samples in the speech signal, and the op-
erator returns the smallest integer greater than . The sam-
ples contained in each frame are then organized into the Toeplitz
structure resembling (1). Following this procedure, we obtain
the set of measurement matrices of
the signal . Here, denotes the frame operator, and is the
subset of natural numbers .

The general notion of a signal subspace model lies in the as-
sumption that the signal subspace is slowly changing and that
it is possible to specify the signal subspace as a composite of
subspace trajectories. In [11], a subspace trajectory is de-
fined as a vector-valued function of the right singular vectors
of a particular signal subspace. Two right singular vectors
and of successive frames belong to the same trajectory if

, where is the transition
bound. Collectively, the family of subspace trajectories char-
acterizes the entire signal subspace.

Algorithm 1: Subspace trajectory decomposition algorithm.
1) Given signal , construct the set of measurement matrices

.
2)

a) Obtain the set of singular values and
the set of right singular vectors from
the SVD of .

b) For to , set .
c) Set , and .

3) For to , do the following.
a) Obtain the set of singular values and

the set of right singular vectors from
the SVD of .

b) For to , do the following.
i) For , determine

.
ii) Find and

.
iii) If , then set and

. Otherwise, set ,
and .

c) Update and .
4) Construct the family of subspace trajectories

.
As a consequence to the rank degeneracy of the measurement

matrices, the family of subspace trajectories obtained in Al-
gorithm 1 contains also trajectories generated in the noise sub-
space . It is vital, therefore, to adopt a selection strategy
to pick a minimal set of subspace trajectories that dis-
cards all but the signal related trajectories of . For the same
purpose, an energy ratio is predetermined.

Algorithm 2: Subspace trajectory selection algorithm.
1) Given the family of subspace trajectories,

.
2) For to , compute the energy map

.
3) Pick the minimal set of indexes such that

.
4) Construct the minimal set of subspace trajectories

.

C. Subspace Classification

Let denote the set of the known classes.
For every class , let the class prototype

denote the minimal set of subspace trajectories obtained by
Algorithm 2. Given an unknown signal , we desire to classify
it into one of the classes in .

In [11], the function

(3)

where is used to define the measure of dissimilarity.
In particular, (3) calculates the deviation of the content of in

from the actual value. The weighted average of (3), with
the trajectory norms as the weighting coefficients, is thereafter
evaluated across all trajectories in , i.e.,

(4)

and . Following that, a minimum-distance
rule is applied to pick the class label of the prototype most sim-
ilar to .

Algorithm 3: Subspace classification algorithm.
1) Given unknown signal and prototypes .
2) For to , set according to (4).
3) Classify according to the minimum-distance rule, i.e.,

.

III. DISCRIMINATIVE CLASSIFICATION STRATEGY

The choice of the trajectory norms as the weighting coeffi-
cients, in a sense, steers the classifier into favouring trajecto-
ries with higher signal content, i.e., such trajectories becoming
the primary candidates in the classification task. The drawback
of this approach, however, is that if two distinct classes have
matching trajectories that are spectrally dominant, it then be-
comes difficult to separate the two classes using Algorithm 3.
A more effective classification strategy, in such a case, would
be to substitute the trajectory norms with other qualities that are
more discriminative in nature.

A. Class Discrimination Measure

Let the discriminative potential of a trajectory of
class with respect to the trajectories of another class that is
contained in the prototype element be
defined as

(5)
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where

(6)

The class discrimination measure of (5) resembles the dis-
similarity measure of (3). Lemma 1 will show that the two
measures are equivalent if generates by Algorithm 1.
It can further be shown that, if , then

.
Lemma 1: Consider a signal belonging to class . Let

generate by Algorithm 1 and suppose that is
one of the measurement matrices of . Then, for any trajectory

of class , we have

Proof: Let the SVD of the measurement matrix be
. We have [11]

(7)

where . It suffices to show that the
sums in (5) and (7) are similar. As generates by Algorithm
1, then, for all , there must exist , and
subsequently

with defined in (6). Furthermore, Algorithm 1 will
show that there are precisely active trajectories at any in-
stance. Thus, the sum in (5) can be written as

thereby completing the proof.
For every class , the measures in (5) are computed for all

trajectories of the class with respect to all other classes
according to Algorithm 4. In particular, all trajectories are ap-
portioned a measure that equals its discriminative potential. Be-
tween two distinct classes and , a trajectory of is said to be
highly discriminative if it is largely dissimilar with all other tra-
jectories of . The set of measures obtained using Algorithm 4,
i.e., , is deemed the class discrimina-
tion information.

Algorithm 4: Constructing the set of class discrimination
measures.

1) Given the prototypes and of two
distinct classes and , respectively.

2) For , set according to (5).
3) Construct the set of class discrimination measures

.

B. Discriminative Subspace Classification

To accommodate the class discrimination information in the
classification procedure, the weighted average of (4) is amended
as follows, i.e.,

(8)

where

Essentially, the weighting coefficients of (8) are the means of
the class discrimination measures obtained by Algorithm 4. A
signal subspace classifier that implements the class discrimina-
tion information is given in Algorithm 5.

Algorithm 5: Discriminative subspace classification algo-
rithm.

1) Given unknown signal , prototypes and the
class discrimination information .

2) For to , set according to (8).
3) Classify according to the minimum-distance rule, i.e.,

.
It is interesting to note that, in the event of the null discrim-

ination, then and , or
equivalently, the weighted average of (8) reduces to (4).

IV. RESULTS AND DISCUSSIONS

This section examines the performance of the proposed signal
subspace classifier as a speech recognizer in two test cases.

A. Isolated Digit Speech Recognition

Speech recordings, at a sampling frequency of 10 kHz, are
collected from a pool of three male speakers. For every digit be-
tween 1–9 and two different utterances of the digit 0, i.e., “Zero”
and “Oh,” ten recordings are obtained, thereby yielding a total
of recordings per speaker. Next, a recording of
each digit is selected randomly to build the set of class proto-
types (Algorithms 1 and 2) and the class discrimination infor-
mation (Algorithm 4), while the other nine recordings are used
as the testing data. The signal subspace classifier obtained is
then evaluated on the testing data with the average recognition
rate (of the three speakers) as the yardstick for performance.

In the simulation, we have used and
and chosen and

as the parameter sets of two
signal subspace classifiers, dubbed DSub1 and DSub2, respec-
tively. For comparison purposes, the same parameter sets are
also used to construct two subspace classifiers, dubbed Sub1 and
Sub2, respectively, which implement Algorithm 3 (see [11]). We
have also included in the simulation two widely used speech
recognizers, i.e., the LP-derived cepstral coefficients (LPCC)
recognizer and the Mel-frequency-derived cepstral coefficients
(MFCC) recognizer, both implementing dynamic time warping.
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TABLE I
RECOGNITION RATE, IN PERCENTAGE (%), OF THE VARIOUS

SPEECH RECOGNIZERS

Two variants of the LPCC, each with a different distortion mea-
sure, are tested: LPCC1 for the Euclidean distance and LPCC2
for the cepstral projection measure [15]. For the LPCC and
MFCC recognizers, a Hamming window
is applied to the data, and 12 cepstral coefficients, liftered with

, are retained as the cepstral vector
[1, Chap. 4]. The main results of the simulation are displayed in
Table I.

It is apparent, from the results in Table I, that the proposed
signal subspace classifiers (DSub1 and DSub2) are superior in
performance to their predecessors (Sub1 and Sub2). The im-
provement is especially evident in DSub2 (over Sub2) as com-
pared to DSub1 (over Sub1). It has been shown in [11] that Sub2
generates more trajectories than Sub1, i.e., 47 against 28.8 on
the average. Thus, more reliable interclass information is avail-
able to Algorithm 4 for constructing DSub2 and consequently
the marked improvement.

B. White Noise Robustness

The second part of our simulation investigates the white noise
robustness of the proposed classifier. The signal-to-noise ratio
(SNR) of the original recorded speech data is approximately
24 dB. Artificial stationary white noise is introduced into the
testing data, and the classifier’s performance at various levels of
SNR is recorded [15]. As in [11], the proposed signal subspace
classifier displays remarkable robustness to additive white noise
(see Fig. 1). This is almost in complete contrast to the LPCC and
MFCC recognizers, which fare poorly in noisy environments.
The white noise robustness of subspace classifiers owes much to
the noise filtering quality inherent in subspace-based methods.

V. CONCLUSION

This letter examines a signal subspace speech classifier that
improves on [11]. The “best representation” approach taken in
[11] is restrictive in the sense that it made no reference to valu-
able interclass information. Due to that, it is prohibitive when
distinguishing between phonetically alike classes. Addressing
these issues, this letter defines a set of class discrimination mea-
sures, deemed the class discrimination information, to charac-
terize discriminative qualities of individual class elements that

Fig. 1. Performance of various speech recognizers as SNR varies.

are later applied in the classification procedure. Results from
simulation affirm the theoretical analysis.
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