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Robust Signal Subspace Speech Classifier
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Abstract—A speech model inspired by the signal subspace ap-
proach was recently proposed as a speech classifier with modest
results. The method entails, in general, the assemblage of a set of
subspace trajectories that consist of the right singular vectors of
measurement matrices of the signal under consideration. Given an
unknown signal, a simple distortion measure then applies in the
classification procedure to pick the best matched class prototype.
This letter examines the issue of robustness in the subspace clas-
sification scheme. Borrowing an important result on noisy mea-
surement matrices, this letter formally establishes the notion of ro-
bustness in subspace classification and proceeds to propose a class
of robust distortion measures for signal subspace models. Simula-
tion results of subspace classifiers implementing the new distortion
measures in an isolated digit speech recognition problem reveal no
degradation in recognition accuracy, even under low SNR condi-
tions.

Index Terms—Robust distortion measures, speech modeling,
speech recognition, subspace methods.

I. INTRODUCTION

THE signal subspace approach to speech processing has tra-
ditionally been confined to speech enhancement problems;

some examples include [1] and [2]. Recently, the authors have
applied the same method in speech modeling and classification
problems with modest results (e.g., [3] and [4]). From a series of
eigendecomposition or SVD on the measurement matrices, the
rowspace(orcolumnspace, ifonesochooses)of thespeechsignal
is broken down into signal subspace trajectories. Subspace infor-
mation contained in these trajectories has been shown to be reli-
able in characterizing the slowly changing speech signal, and as a
feature extraction preprocessing step, this method is comparable
to the more popular cepstral-derived techniques like the LPCC
and MFCC (e.g., [5]–[7] and [8]). Simulation results also reveal
signal subspace-based classifiers to be fairly robust at moderate
levels of signal-to-noise ratio (SNR) [3].

This letter extends the work in [3]. In particular, we will for-
mally introduce the notion of robustness in the context of signal
subspace classification. We will show, specifically, that the dis-
tortion measure used in [3] is not robust in the sense that an
artifact term is always present in the function due to noise. To
overcome the problem, we will formulate a novel class of robust
distortion measures that is specially designed to be immune to
additive stationary white noise. Results from computer simula-
tion on an isolated digit speech recognition problem affirm the
theoretical analysis.

The rest of this letter is structured as follows: A brief review
on signal subspace modeling and classification is covered in
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Section II. The section reproduces an important result on noisy
measurement matrices that appeared in [9] and that will serve
as a basis for developing robust distortion measures in the next
section. Section III, which contains the main ideas of this letter,
also examines an experimental analysis on the effect of additive
white noise in signal subspace modeling and then proceeds to
propose a class of robust distortion measures. Simulation results
and discussions are recorded in Section IV, and Section V pro-
vides the major conclusions.

II. SUBSPACE MODELING

A. Signal Model and the SVD

A measurement matrix is constructed by orga-
nizing samples of the measurement data into the
Toeplitz matrix of the form [9], [2]

...
...

...
(1)

where and the matrix dimension constrained by
. The measurement matrix is typically rank deficient

[9], that is, the actual signal content lies in a signal subspace
of a lower dimension, i.e., .

The thin SVD (or economy-size SVD) of the measurement
matrix is defined as [10, p. 72]

where the columns of are mu-
tually orthonormal, is a unitary
matrix, and has the form

The diagonal elements of are the singular values of and are
ordered so that . The columns of and
are, respectively, called the left and right singular vectors.

Let us assume that is made up of a rank signal matrix
and a matrix of the noise process, i.e.,

Let us further suppose that the SVD of the rank signal matrix
be given as

where
, and . Under the assumption that the

noise is white and uncorrelated with the signal of interest, i.e.,
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and , an explicit expression
of in terms of the SVD of can be formulated as [9]

(2)

It is not difficult to show that (2) is an SVD of of the form

One result that follows immediately from (2) is that the row
space (or equivalently, the right singular vectors) of are pre-
cisely those of since and . In the col-
ored noise case, a prewhitening matrix , where

is the noise covariance matrix, can always be ap-
plied to the measurement matrices, and one can still recover
and from after a bit of work [9] (see also [1] and
[11]). Thus, we will assume, without the loss of generality, that
the noise is white, and the aforementioned assumptions will be
tacitly implied for the rest of this letter.

B. Subspace Decomposition and Selection

A running rectangular window is used to acquire the analysis
frames of the speech signal . The window is length and
advances every samples. The th frame, therefore, consists
of the samples

, and there are, in total, frames,
where is the number of samples in the speech signal and the
operator returns the smallest integer greater than or equal to

. The samples contained in each frame, say, ,
are then organized into a measurement matrix of the form as in
(1). Following this procedure, we obtain a set of measurement
matrices from the signal . Here,

denotes the frame operator and is the subset of natural
numbers .

The general notion of signal subspace modeling lies in the as-
sumption that the signal subspace is slowly changing and that it
is possible to specify it as a composite of subspace trajectories.
In the case here, the subspace trajectory is a vector-valued
function of the right singular vectors of successive measurement
matrices. It is nonzero (or active) in some frame interval

, and two right singular vectors and of successive
frames belong to the same trajectory if ,
where 1 is the transition bound. The bound

ensures that no more than one vector (from the set of
orthonormal right singular vectors) lies within of vector .
Collectively, the family of subspace trajectories

, where represents the set of trajectory in-
dices, characterizes the entire signal subspace.

Due to the rank degeneracy of the measurement matrices,
it becomes necessary to separate the signal-related trajectories
from the ones in the noise subspace . For this purpose,
a simple selection algorithm, which attaches to each trajectory
an energy measure and thereafter picks a minimal set of sub-
space trajectories such that the accumulated energies
in exceed a preset threshold , is applied. Implementation

1In the m = 2 case, and supposing v and v are the two orthonormal
vectors spanning the Euclidean plane, then the upper bound on � —let us call
that � —is the angle cos (u v ) [or equivalently cos (u v )], where
u = 2 (v + v ). This angle is readily seen as � = cos (2 ). In
the Euclidean m-space, it follows that � = cos (m ).

details of the subspace trajectory decomposition and selection
algorithms can be found in [3].

C. Subspace Classification

For every class , where denotes the set of all known
classes, let be the class proto-
type obtained through the subspace decomposition and selection
algorithms. Given an unknown signal , we desire to classify
it into one of the classes in . In [3], the function

(3)

where is used to define the measure of distortion.
In particular, (3) calculates the deviation of the content of in

from the actual value. The weighted average of (3), with
the trajectory norms as the weighting coefficients, is thereafter
evaluated across all trajectories in , i.e.,

(4)

where , and afterward, the class label of the
prototype that minimizes (4) is picked as the class label of .

III. ROBUST SUBSPACE CLASSIFIERS

To examine the notion of robustness in signal subspace mod-
eling, let us consider for the moment the distortion measure of
(3) in the following special case.

Lemma 1: Let denote the clean signal of class with
which the subspace prototype
is associated and suppose , where is a stationary
white noise process with variance , is the noisy mea-
surement. Then, the distortion measure in (3) is nonzero, i.e.,

, for any active and of
the same frame instant.

Proof: Let the SVD of the measurement matrix be given
as and suppose .
We may then write

With this, (3) becomes

By (2), it turns out that must be exactly one of the right
singular vectors of , i.e., there exists an such that
and . Henceforth, we have

Lemma 1 clearly demonstrates the insufficiency of (3) as a
robust distortion measure. An undesirable artifact, whose mag-
nitude increases with the noise power, is always present in (3),
and as a result, recognition accuracy will tend to deteriorate as
SNR drops. The robust classifier should, despite the inclusion of
the noise terms, perform comparably to the noise-free case, i.e.,
the distortion measure is zero under the conditions described in
Lemma 1. This section explores the issue in greater detail.

A. Qualitative Analysis

Given and as the clean and noisy signals defined in
Lemma 1, we will assess empirically the departure of the right
singular vectors of the measurement matrices from
that of the subspace trajectories of . Recall that each
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Fig. 1. Histograms of f( ;X) of the utterance “Eight” at (a) SNR = 16 dB,
and (b) SNR = 4 dB. [K = 160;K = 40;m = 20; � = 25 ; E = 0:9].

trajectory is a function of the right singular vectors of the
measurement matrices of . Thus, our analysis will, in effect,
compare the right singular vectors of the measurement matrices
of the two signals.

To that end, we define, for every active trajectory ,
the measure

where are the right singular vectors of of the
same frame instant. The function , in general, calcu-
lates the cosine of the angle between with the best matched
right singular vector of . Due to (2), we expect this value to
be one, but simulation results will show otherwise. As shown in
Figs. 1 and 2, there are some instances at which
and the frequency of such occurrences generally increases as
SNR drops. Nevertheless, it is fair to conclude from the results
that the right singular vectors (or row space) of the two sets of
measurement matrices are almost identical, even if they are not
exactly alike.

B. Robust Distortion Measures

The above findings lay out some fundamental considerations
in the attempt to define robust distortion measures for signal
subspace classifiers. Suppose
is the class subspace prototype obtained through the usual
subspace decomposition and selection algorithms. We desire to
classify the unknown signal into one of the classes in .

Fig. 2. Histograms of f( ;X) of the utterance “Five” at (a) SNR = 16 dB
and (b) SNR = 4 dB. [K = 160;K = 40;m = 20; � = 25 ; E = 0:9].

Let be one of the measurement matrices of
and suppose there exists the active trajectory in
the same frame instant. We will define the term

such that and , which are obtained from the SVD of ,
are the best matched right singular vector of and the corre-
sponding singular value, respectively. It is readily seen that the
following robust subspace difference measure

(5)

where satisfies the condition for robustness expressed
previously. A global dissimilarity measure mirroring (4), i.e.,

with weighting coefficients chosen as , henceforth
applies to pick the class label of the unknown signal.

Lemma 2: For signals and defined in Lemma 1, the
distortion measure in (5) is always zero, i.e., ,
for any active and of the same frame
instant.

One possible extension of (5) is obtained by writing

(6)
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If , the function in (6) has the form of an inner product,
i.e., , or equivalently, the projec-
tion of onto . For this reason, we shall refer to (6) as the
robust subspace projection measure. In the case of the projec-
tion measure, the unknown signal is assigned the class label
of the prototype that minimizes the simple sum

IV. RESULTS AND DISCUSSIONS

In this section, we investigate the white noise robustness of
the proposed classifier in an isolated digit speech recognition
problem. Speech recordings, at a sampling frequency of 10 kHz
and SNR of approximately 24 dB, are collected from three male
speakers. For every digit between 1–9 and two different utter-
ances of the digit 0, i.e., “Zero” and “Oh,” ten recordings are ob-
tained, thereby yielding a total of recordings per
speaker. A recording of each digit is then randomly selected to
build the set of class prototypes, while the other nine recordings
are used as the testing data. To gauge the white noise robust-
ness of the proposed classifier, artificial stationary white noise
is introduced into the testing data at different levels of SNR
[8]. Then, incorporating the proposed robust distortion measures
(particularly the functions and ) into the classifica-
tion scheme, the average recognition rate (of the three speakers)
applies as the yardstick for performance. In the simulation, we
have chosen and following [2] and [3] and
used and as the parameters in
the subspace decomposition and selection algorithms.

For comparison purposes, we also present simulation re-
sults on the original signal subspace classifier (see [3]) and
included in the simulation two widely used speech recognizers,
i.e., the LP-derived cepstral coefficients (LPCC) recognizer
and the Mel-frequency-derived cepstral coefficients (MFCC)
recognizer, both implementing dynamic time warping. For
the LPCC, the cepstral projection measure, which was origi-
nally designed to combat additive white noise [8], applies as
the distortion measure, whereas in the MFCC, the Euclidean
distance is used. In both the recognizers, a Hamming window

is applied to the data and 12 cepstral
coefficients, lifted with , are
retained as the cepstral vector [12, Ch. 4]. The main results of
the simulation are presented in Fig. 3.

It is clear from the figure that the four subspace classifiers im-
plementing the proposed distortion measures recorded relatively
consistent performance over the range of SNR tested. At SNR of
0 dB, we note that the recognition accuracy of these classifiers
is only slightly lower (by about 3%) from when the SNR is 24
dB. The original signal subspace classifier, while fairly robust
for SNR above 8 dB due to the noise-filtering quality inherent
in the subspace approach, declines rapidly in performance as
SNR falls below this level. Of the four new subspace classifiers
evaluated, the second-order robust projection measure, or ,
achieves the highest recognition accuracy, and this result, in a
way, parallels that of [8], where it has been shown that projec-
tion measures are often more reliable than difference (or dis-
tance) measures in adverse ambient conditions. It is important
to note, however, that unlike the distortion measure in [3], the
pair of robust distortion measures proposed here requires the

Fig. 3. Performance of various speech recognizers as SNR varies.

computationally expensive SVD. Thus, in resource-constrained
applications, it may be desirable to approximate the SVD with
alternative decomposition techniques that are cheaper computa-
tion-wise (e.g., [11]).

V. CONCLUSION

In this letter, we established the notion of robustness in signal
subspace classifiers. We have experimented with adding sta-
tionary white noise to the measurement data and obtained re-
sults that corroborated with earlier theoretical findings in [9].
Based on these results, we have proposed a class of robust dis-
tortion measures for signal subspace classifiers, and preliminary
experimentation on an isolated digit speech recognition problem
reveals promising results.
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