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Abstract

Recently, a speech model inspired by signal subspace methods was proposed for a speech classifier. In using subspace

information to characterize the speech signal, subspace trajectories in the form of the right singular vectors of the

measurement matrices are obtained. Signal classification is thereafter accomplished by a minimum-distance rule with

noteworthy results. This paper extends the foregoing approach by organizing the vector trajectories into matrices. The

matrices so obtained are the reduced-rank approximation of the sample correlation matrices. A new dissimilarity measure

in the Frobenius norm is correspondingly proposed for the matrix trajectories. Simulation results of the proposed

composite signal subspace classifier in an isolated digit speech recognition problem reveal an improved performance over

its predecessor. Additionally, the results also show the proposed classifier retaining the white noise robustness of the

original design.

r 2007 Published by Elsevier B.V.
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1. Introduction

The underlying assumption in signal subspace
speech modelling lies in the premise that speech
signals are strictly nonstationary and consist of
short term dynamics that are slowly changing [1,
Chapters 2 and 3; 2, Chapter 4]. In fact, popular
speech processing techniques like the short-time
Fourier transform (STFT), linear prediction coding
(LPC) [3–5], and cepstral methods [3,6,7], are
developed on the basis that the spectral content is
slowly changing across the entire speech signal.
These methods generally function by specifying the
e front matter r 2007 Published by Elsevier B.V.
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relevant acoustic events in the speech signal in terms
of a compact and efficient set of speech parameters.

A signal subspace speech model is a characteriza-
tion of the speech signal in terms of its subspace
information. The signal subspace approach to
speech processing was originally applied for speech
enhancement techniques (such as [8–10]) and it has
only been used recently as a speech classifier [11,12].
This paper extends the work in [11] for a slightly
different class of signal subspace classifiers. In [11],
subspace trajectories are characterized by the right
singular vectors of the measurement matrices and
the difference of the signal content in the trajectory
set from its actual value is thereafter used as a token
of the distance measure in the classification proce-
dure. We propose here an alternative strategy,
through organizing these singular vectors into
matrices. It will be shown that the matrices obtained
ubspace speech classifier, Signal Process. (2007), doi:10.1016/
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in such a manner are the reduced-rank approxima-
tion of the sample correlation matrices. A new
dissimilarity measure in the Frobenius norm is
subsequently proposed for the matrix trajectories.
The performance of the proposed composite signal
subspace classifier is tested against its predecessor in
an isolated digit speech recognition problem and
results appear promising.

The rest of the paper is structured as follows: a
brief review on signal subspace modelling is covered
in Section 2. Section 3 develops the main ideas
behind the proposed composite signal subspace
classifier. Simulation results and discussions are
recorded in Section 4 and Section 5 provides the
major conclusions.

2. Subspace modelling

A running rectangular window is used to acquire
the analysis frames of the speech signal. The window
is K length and advances every K1 samples. The tth
frame, therefore, consists of the samples K1ðt� 1Þ þ
1;K1ðt� 1Þ þ 2; . . . ;K1ðt� 1Þ þ K and there are, in
total, T ¼ dðL� KÞ=K1 þ 1e frames where L is the
number of samples in the speech signal and the
operator dxe returns the smallest integer greater than
or equal to x. The samples contained in each frame,
say x1;x2; . . . ;xK , are then organized into a measure-
ment matrix of the form [8,10]

X ¼

xm xm�1 � � � x1

xmþ1 xm � � � x2

..

. ..
. ..

.

xK xK�1 � � � xK�mþ1

2
666664

3
777775
2 Rn�m, (1)

where n4m and the matrix dimension constrained
by K ¼ nþm� 1. Following this procedure, we
obtain the set of measurement matrices fX ðtÞ: t 2
NT g ¼TðxÞ of the signal x. Here, T denotes the
frame operator and Ni is the subset of natural
numbers f1; 2; . . . ; ig.

The thin SVD (or economy-size SVD) of the
measurement matrix X in (1) is defined as [13, p. 72]

X ¼ USVT ¼
Xm

k¼1

ukskv
T
k ,

where the columns of U ¼ ½u1; u2; . . . ; um� 2 Rn�m are
mutually orthonormal, V ¼ ½v1; v2; . . . ; vm� 2 Rm�m is
a unitary matrix and S 2 Rm�m has the form

S ¼ diagðs1;s2; . . . ;smÞ.
Please cite this article as: A.W.C. Tan, et al., A composite signal
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The diagonal elements of S are the singular values of
X and are ordered so that s1Xs2X � � �Xsm. The
columns of U and V are, respectively, called the left

and right singular vectors. The SVD of the
measurement matrix is also useful to describe the
eigendecomposition of the sample correlation ma-
trix Rx defined as [10]

Rx ¼
1

n
XTX ¼

1

n

Xm

k¼1

s2kvkv
T
k . (2)

Formally, the subspace trajectory cðtÞ is defined
as a vector-valued function of the right singular
vectors of successive measurement matrices [11]. It
is nonzero (or active) in some frame interval
t1ptpt2 and two right singular vectors vt and vtþ1

of successive frames belong to the same trajectory if
jcos�1ðvTt vtþ1Þjpyth, where ythocos�1ðm�1=2Þ is the
transition bound. Collectively, the family of subspace

trajectories C ¼ fcjðtÞ: j 2 J; t 2 NT g, where J
represents the set of trajectory indices, characterizes
the entire signal subspace.

Algorithm 1. Subspace trajectory decomposition
algorithm.
(1)
subsp
Given signal x, construct the set of measurement
matrices fX ðtÞ: t 2 NT g ¼TðxÞ.
(2)

(a) Obtain the set of singular values fsk: k 2

Nmg and the set of right singular vectors
fvk: k 2 Nmg from the SVD of X ð1Þ.

(b) For k ¼ 1 to m, set ckð1Þ  skvk.
(c) Set I Nm, I

0  ;and M  m.
ace
(3)
 For t ¼ 2 to T, do
(a) Obtain the set of singular values fsk: k 2

Nmg and the set of right singular vectors
fvk: k 2 Nmg from the SVD of X ðtÞ.

(b) For k ¼ 1 to m, do
(i) For 8i 2 I, determine

yi  cos�1
vT

k
ciðt�1Þ

kciðt�1Þk

���
���.

(ii) Find i0  argmini2Ifyig.
(iii) If yi0pyth, then set ci0

ðtÞ  skvk

and I0  I0 [ i0. Otherwise set
cMþ1ðtÞ  skvk, I0  I0 [ ðM þ 1Þ
and M  M þ 1.

(c) Update I I0 and I0  ;.
speec
(4)
 Construct the family of subspace trajectories
C fcj : j 2 NMg.
As a consequence to the rank degeneracy of the
measurement matrices, it becomes necessary to pick
a minimal set of subspace trajectories �C � C that
h classifier, Signal Process. (2007), doi:10.1016/
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retains only the dominant trajectories of C [11]. For
this purpose, an energy ratio Eth is predetermined
and we have the following algorithm.

Algorithm 2. Subspace trajectory selection algo-
rithm.
(1)
Ple

j.s
Given the family of subspace trajectories
C ¼ fcj: j 2 NMg.
(2)
 For j ¼ 1 to M, compute the energy map
Ej  

PT
t¼1kcjðtÞk

2.

(3)
 Pick the minimal set of indices J � NM such

that
P

k2JEk4Eth

P
l2NM

El .

(4)
 Construct the minimal set of subspace trajec-

tories �C fcj: j 2 Jg.
Figs. 1b and 2b show the extent of the individual
trajectories in the minimal set of subspace trajec-
tories for utterances ‘‘Eight’’ and ‘‘Five’’, respec-
tively. The number in the parentheses indicates the
energy of the corresponding trajectory.
1The Frobenius norm of a matrix A 2 Rn�m is defined as

kAkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Xm

j¼1

jaij j
2

vuut ,

where aij is the ijth element of the matrix [13, p. 55].
3. Composite subspace trajectory

3.1. Definition

Another perspective of the subspace approach in
signal modelling arises when the trajectory vectors
are organized into matrices. Formally, we define the
composite subspace trajectory �C ¼ fHðtÞ: t 2 NT g as
a sequence of matrices of the form

HðtÞ ¼ ½c1ðtÞ c2ðtÞ � � � cpðtÞðtÞ�,

where c1;c2; . . . ;cpðtÞ denote the active trajectories
in frame t of a given set of subspace trajectories. We
denote this transformation by the mapping M.

From the definition of H, it is clear that the
matrix HHT is a scaled p-rank approximation of the
sample correlation matrix Rx of the same frame, i.e.,

HHT ¼
Xp

i¼1

s2li
vli
vTli
, (3)

where sli
and vli

follow from the eigendecomposition
of nRx in (2) and li 2 Nm, lialj unless i ¼ j. This
approximation is, however, not necessarily optimal in
the 2-norm sense. The nearest 2-norm approximation
of nRx would have, for the indices of the sum in (3),
li ¼ i. In the case where the composite trajectory is
obtained from the family of subspace trajectories
generated by Algorithm 1, then H 2Mm�m and
HHT ¼ nRx. Otherwise, the composite trajectory is
ase cite this article as: A.W.C. Tan, et al., A composite signal s
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composed of distinct matrices of varying dimension
and rank. Figs. 1c and 2c display the rank of these
matrices for utterances ‘‘Eight’’ and ‘‘Five’’, respec-
tively. There are, in total, 72 matrices characterizing the
composite trajectory of the utterance ‘‘Eight’’ and 78
matrices for the utterance ‘‘Five’’.

As HHT is, in essence, a rank p approximation of
nRx, it is conceivable to perceive a slightly different
approach in obtaining �C, i.e., by a direct minimal 2-
norm reduced-rank approximation of the sample
correlation matrices. To that end, an estimate of the
rank must be determined for each of the sample
correlation matrices. The model selection strategies
employed in [14] and based on the information
theoretic criteria of [15–17] are some of the common
choices for this purpose. Figs. 1d and 2d show the rank
of the matrices detected with the minimum description
length (MDL) of [17]. From these plots, it is evident
that the MDL models generate matrices of a signi-
ficantly greater rank. As a result, these models are likely
to overfit the signal subspace rendering the approach
unsuitable for most classification tasks. Results from
our experiments corroborate this observation.

3.2. Subspace classification

Let C ¼ f1; 2; . . . ;Cg denote the set of the C

known classes. For every class c 2 C, let the class
prototype �Cc ¼ fHcðtÞ: t 2 NT g be the composite
subspace trajectory of the signal class. Given an
unknown signal x0, we desire to classify it into one
of the classes in C.

A straightforward dissimilarity measure that
follows from the foregoing property of the compo-
site subspace trajectory is

dðHc;X Þ ¼ kX
TX �HcH

T
c k

2
F

where X 2Tðx0Þ and k � kF is the Frobenius norm.
1As a consequence to (3), we have the following
lemma.

Lemma 1. If x0 is the signal that generates C by

Algorithm 1 and �Cc ¼MðCÞ is the corresponding

composite subspace trajectory, then dðHc;X Þ ¼ 0 for

every Hc 2 �Cc and X 2Tðx0Þ of the same frame

instant.
ubspace speech classifier, Signal Process. (2007), doi:10.1016/
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Fig. 1. (a) The utterance ‘‘Eight’’, (b) extent of the subspace trajectories, (c) rank of the composite subspace trajectory, and (d) rank of the

MDL model (K ¼ 160, K1 ¼ 40, m ¼ 20, yth ¼ 25�, Eth ¼ 0:9).
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The sum of dissimilarity measures over the entire
utterance gives us a means to evaluate the like-
ness of the unknown signal with the prototype
classes, i.e.,

Að �Cc; x0Þ ¼
XT

t¼1

dðHcðtÞ;X ðtÞÞ (4)
Please cite this article as: A.W.C. Tan, et al., A composite signal
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Algorithm 3. Subspace classification algorithm.
(1)
subsp
Given unknown signal x0 and prototypes
f �Cc: c 2 Cg.
(2)
 For c ¼ 1 to C, set vc  Að �Cc;x0Þ according
to (4).
(3)
 Classify x0 according to the minimum-distance
rule, i.e., argminc2Cfvcg.
ace speech classifier, Signal Process. (2007), doi:10.1016/
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Fig. 2. (a) The utterance ‘‘Five’’, (b) extent of the subspace trajectories, (c) rank of the composite subspace trajectory, and (d) rank of the

MDL model (K ¼ 160, K ¼ 40, m ¼ 20, y ¼ 25�, E ¼ 0:85).
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4. Results and discussions
1 th th
This section examines the performance of the
proposed composite signal subspace classifier as a
speech recognizer in two test cases.
Please cite this article as: A.W.C. Tan, et al., A composite signal s
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4.1. Isolated digit speech recognition

Speech recordings, at a sampling frequency of
10 kHz, are collected from three male speakers. For
every digit between 1 and 9 and two different
ubspace speech classifier, Signal Process. (2007), doi:10.1016/
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utterances of the digit 0, i.e., ‘‘Zero’’ and ‘‘Oh’’, 10
recordings are obtained, thereby yielding a total of
11� 10 ¼ 110 recordings per speaker. Next, a
recording of each digit is selected randomly to build
the set of class prototypes (Algorithms 1 and 2
and the mapping M) while the other nine record-
ings are used as the testing data. The composite
signal subspace classifier obtained is then evaluated
on the testing data with the average recognition rate
(of the three speakers) as the yardstick for
performance.

In the simulation, we have used K ¼ 160 and
K1 ¼ 40 (following [10,11]), and chosen (m ¼ 20,
yth ¼ 25�, Eth ¼ 0:9) and (m ¼ 28, yth ¼ 35�,
Eth ¼ 0:925) as the parameter sets of two composite
signal subspace classifiers, dubbed CSub1 and
CSub2, respectively. For comparison purposes, we
also presented simulation results on a few types of
classifiers, namely, two subspace classifiers (Sub1
and Sub2) which implement the classification
scheme in [11], two LP-derived cepstral coefficients
(LPCC) recognizers and a Mel-frequency-derived
cepstral coefficients (MFCC) recognizer. The two
variants of the LPCC, each with a different
distortion measure, are LPCC1 of the Euclidean
distance and LPCC2 of the cepstral projection
measure [18]. For the LPCC and MFCC recogni-
zers, a Hamming window (K ¼ 240, K1 ¼ 80) is
applied to the data and 12 cepstral coefficients,
liftered with wliftðkÞ ¼ 1þ 6 sinðpk=12Þ, are re-
tained as the cepstral vector [1, Chapter 4]. The
main results of the simulation are displayed in
Table 1.

It is apparent, from these results, that the
proposed composite signal subspace classifiers
(CSub1 and CSub2) are superior in performance
to their predecessors (Sub1 and Sub2) and compar-
able to the LPCC and MFCC recognizers.
Table 1

Recognition rate, in percentage (%), of the various speech

recognizers

Classifier Recognition rate (%)

CSub1 92.3

CSub2 93.6

Sub1 85.2

Sub2 89.6

LPCC1 89.2

LPCC2 92.9

MFCC 85.2

Please cite this article as: A.W.C. Tan, et al., A composite signal
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4.2. White noise robustness

The second part of our simulation investigates the
white noise robustness of the proposed classifier.
The signal-to-noise ratio (SNR) of the original
recorded speech data is approximately 24 dB.
Artificial stationary white noise is introduced into
the testing data and the classifier’s performance at
various levels of SNR is recorded [18]. As in [11], the
proposed composite signal subspace classifier dis-
plays remarkable robustness to additive white noise
(see Fig. 3). This is almost in complete contrast to
the LPCC and MFCC recognizers which fare poorly
in noisy environments. The white noise robustness
of subspace classifiers is largely attributed to the
noise filtering quality inherent in subspace-based
methods.
5. Conclusion

This paper extends the work in [11] for a slightly
different class of signal subspace classifiers.
Through the organization of the right singular
vectors of the measurement matrices into matrices,
the composite subspace trajectory is obtained for
the signal of interest. A new dissimilarity measure in
the Frobenius norm that assesses the likeness of the
sample correlation matrices with the composite
subspace trajectory is correspondingly proposed.
Results from simulation show that the proposed
signal subspace classifier is superior to its predeces-
sor in an isolated digit speech recognition problem,
and at the same time, retains the white noise
robustness of the original design.
subspace speech classifier, Signal Process. (2007), doi:10.1016/
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