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[1] Topologically, water bodies are the first-level topographic regions that get flooded,
and as the flood level gets higher, adjacent water bodies merge. The looplike network
that forms along all these merging points represents zones of influence of each water body.
These two topologically interdependent phenomena follow the universal scaling laws
similar to certain other environmental and biological phenomena. Despite
morphological variations, water bodies and their influence zones of varied sizes and
shapes have different sets of scaling exponents, thereby determining that they belong to
different universality classes.
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1. Introduction

[2] The organization of the terrain is usually explained by
topologically significant loopless (channel), looplike
(subwatershed boundaries) networks [Mandelbrot, 1982;
Turcotte, 1997;Rodriguez-Iturbe andRinaldo, 1997;Rinaldo
et al., 2006], and the spatial distribution of water bodies.
[3] Seed and the pulp that forms around the seed are the

examples of subsets of sets. Other examples include, to
name a few, skeleton-body, river network–basin, grain-
pore, and water body–watershed. One such phenomenon
from the geophysical context is small water bodies (subsets)
and their influence zones (sets). Within a biogeographic
boundary, the influence of water body (M ) extends to its
floodwater front stagnant line, in other words zone of
influence (X ), the boundaries of that would be found along
topographically convex zones that are attributes of various
environmental and ecological geomorphologic phenomena.
As illustrated schematically in Figure 1, water bodies are
contained in their corresponding influence zones.
[4] Scaling exponents of certain simulated and realistic

geophysical networks are derived [e.g., Horton, 1945;
Langbein, 1947; Hurst, 1951; Hack, 1957; Mandelbrot,
1982; Mesa and Gupta, 1987; Robert and Roy, 1990; Rosso
et al., 1991; Ijjasz-Vasquez et al., 1993; Sagar and Rao,
1995; Maritan et al., 1996a, 1996b; Rodriguez-Iturbe and
Rinaldo, 1997; Banavar et al., 1999; Dodds and Rothman,
1999; Veitzer and Gupta, 2000; Sagar, 2000; Maritan et al.,
2002; Sagar and Srinivas, 2002; Sagar and Tien, 2004;
Sagar and Chockalingam, 2004; Chockalingam and Sagar,
2005; Tay et al., 2006]. These scaling exponents are derived
between many morphometric parameters estimated on the
basis of the analysis of geomorphologic/geophysical data
available in numerous synthetic and realistic geophysical
networks and basins.

[5] Water bodies, considered as local minima zones or
depressions, do have characteristic shapes, sizes, and
lengths that may be linked with their zones of influence
or potentially flooded areas [Sagar, 2005]. Water bodies and
their zones of influence have not been sufficiently studied
yet from the viewpoint of their’ scaling laws. No attempt
has been made to relate the scaling exponents of these two
phenomena. The goal of this paper is to derive the scaling
laws (as they would reveal shared principles underlying
geomorphic organization of different terrains for these two
interconnected topological phenomena) via allometric rela-
tionships and certain size distributions of both water bodies
and associated influence zones. The purpose of this paper is
to present power laws for the organizations of water bodies
and the associated influence zones, as comparing these two
phenomena (like subset and set respectively to each other)
by searching homogeneties is of fundamental importance. In
the subsection that follows, I discuss the specifications of
study region, and criteria followed in generating the zones
of influence that allows the comparison of realistic water
bodies and their zones of influence.
[6] I consider a region, consisting of a large number of

semiartificial irrigation tanks of various sizes and shapes, of
a floodplain region of Gosthani River (one of the east
flowing rivers of India) situated between 18�000 and
18�150N latitudes and 83�150 and 83�300E longitudes. These
water bodies are controlled by topography, and at one side
minor bunds are constructed in order to store the water.
[7] The general spatial patterns of these water bodies are

uniquely determined by general river flow patterns within a
floodplain region. The slope of this floodplain region in
general is with <2�, in which the topographic undulations
are not too rough to discard the assumption of flood
propagation is rather isotropic. The water bodies, from
Landsat and System 10 pour Observation de la Terre (SPOT)
Geocoded visual (paper) products acquired in 1986 and
1990, are not very conspicuous. This is because the water
bodies are rather (1) shallow and (2) polluted with acute
siltation problem. For decades, no attempts have been made
to desilt these water bodies. For these two reasons, extrac-
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tion/tracing of these water bodies directly from remotely
sensed data is an arduous task.
[8] The water body data (Figures 2a and 3a) in binary

format is obtained in the following way: The topographic
map has been employed to trace the water bodies (with
reference to the supporting remotely sensed data), the
boundaries of which are given at full-tank level. With
reference to topographic map source (Survey of India,
toposheet), water bodies’ general structures could be iden-
tified from SPOT and Landsat data. The water bodies from
this topographic map are traced manually. This traced water
bodies that is noise free is scanned via digital scanner in
binary mode. This scanned version has been directly used
for other analysis reported in the forthcoming sections. As
the aim of this paper is to derive the scaling relationships via
allometries and size distributions, emphasis is not laid on
extraction of water bodies from remotely sensed data.
[9] The zone of influence is akin to the partitioned

catchment. Usually this type of catchment divide would
be extracted from analysis of DEMs [e.g., Band, 1986;
Vincent and Soille, 1990]. However, because the floodplain
regions are usually flat with <2� slope, it is difficult to
derive the lines partitioning the adjacent catchments for
which the water bodies (Figure 3a) act as minima. In other
words, the topographic variations are too negligible to
be captured from available topographic maps. Hence the
impact of topography is left out while derivation of zones of
influence. The study region here is obviously with <2�.
Because of the nature of the region, which is, in general,
free of topographic undulations (with the exception of a few
isolated hummocks of rather gently sloped hills), the
assumption that the flood fills the no-water-body region in
a way equivalent to morphological dilation that I adapted in
derivation of zones of influence (ZIs).

[10] In the present paper, in that the aim and focus
are on derivation of scaling laws of water bodies and their
corresponding zones that are potentially flooded areas, I
considered the following: (1) a large number of water
bodies and their influence zones (the latter phenomenon is
derived by following simple flood simulation principle);
(2) estimated basic measures, such as areas (A), longitudinal
(Lk) and transverse lengths (L?)), of both water bodies and
their corresponding zones of influence; and (3) size-
distributed water bodies and zones of influence.
[11] By considering the above data, finally allometric

power law relations are derived on the basis of the scaling
relationships between the basic measures and also on the
basis of size-distributed water bodies’ and zones’ statistics.
These derived relationships among many parameters
retrieved from water bodies and ZIs can account for the
power laws and provide the basis for new insights.
[12] The organization of this paper is as follows: (1) The

basic morphological tools required to generate influence
zones of water bodies and to perform size distributions of
both water bodies and associated influence zones are briefly
described in section 2. (2) Allometry-based scaling relation-
ships of water bodies, found along topographically concave
zones, and their zones of influence are given in section 3.
(3) Size-distribution-based relationships for these two asso-
ciated phenomena are provided in section 4. Section 5
concludes this paper with certain new insights.

2. Methods

[13] I organize this section as follows: (1) implementation
of basic binary morphological transformations, (2) method-
ology adopted to generate zones of influence of surface
water bodies, and (3) sifting of both water bodies and
associated ZIs according to their sizes.

2.1. Basic Mathematical Morphological
Transformations and Their Implementation

[14] Consider the set M of the water bodies, and the disk
rB(x) of radius r centered at point x. Dilation of M can be
obtained by replacing each point m of the set M by the disk
rB(x), and take the union d(M) of the results:

d Mð Þ ¼ [frB mð Þ;m 2 Mg; ð1Þ

where d(M) is called the dilation of M by B and B be a flat
structuring template, that is, a finite connected subset of
discrete plane Z2. Similarly, replace each rB(m) which is
included inM by its center m, and take the union e(M) of the
results:

e Mð Þ ¼ [fm : rB mð Þ � Mg; ð2Þ

where the set e(M) is called the eroded set M by B. We
henceforth denote set consists of water body as M in Z2: the
set complement Mc denotes the no-water-body region. For
notational simplicity, I henceforth denote dB(M) and eB(M)
respectively as M � B and M  B. The increase in radius of
B is shown for n times (equation (3)). In other words, in
Euclidean discrete space Zn, nB set similar to B by factor
n = 0, 1, 2,. . ., N. An octagonal shaped symmetric B of
primitive size 5� 5 is considered to be of ‘‘size 1.’’ The B of

Figure 1. Schematic section diagram showing that the
water bodies (cyan regions) are smaller than the influence
zones (regions within the black boundaries).
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Figure 2. Illustrations of section of water body data after different degrees of morphological
transformation. (a) Part of the water body data shown in Figure 3a, (b–e) increasing degrees of dila-
tion transformation applied with increasing radius on Figure 2a, and (f–i) different degrees of erosion
transformation applied on Figure 2a. Specifically, the water bodies have vanished under the erosion after
the fourth cycle. ( j–m) Water bodies shown in Figure 2a progressively filtered according to their sizes
under the multiscale-opening transformation. The dilation (Figures 2b–2e), erosion (Figures 2f–2i), and
vanishing of water bodies (Figures 2j–2m) are obvious. It is obvious that water bodies of all sizes are
filtered out after the fourth cycle of opening transformation. A structuring element of primitive size 5 � 5,
octagonal in shape, and with center as origin has been employed in this transformation.

Figure 3. (a) A section consisting of a large number of small water bodies traced from the floodplain
region of Gosthani River and (b) zones of influence of water bodies shown in Figure 3a. Different colors
are used to distinguish the adjacent influence zones.
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‘‘size 1’’ denoted as ‘‘nB,’’ is defined as Minkowski sum of
B with itself n times (equation (3)). If B is of size 1, the
finite sets

nB ¼ B� B� B� � � � � B� B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�times

ð3Þ

define a family of structuring element generated by B and
parameterized by the discrete size parameter n = 0, 1, 2,. . .,N.
By convention, nB = {(0,0)} if n = 0; nB + mB = (n + m)B
for any set B and for any nonnegative integers m and n. If B
is convex, then nB is shaped like B but has size ‘‘n.’’ The
shape of nB is controlled by the shape of primitive size of B,
whereas n controls the size. This concept of discrete shape-
size family of template is due to Lantuejoul [1978] and
Maragos [1989]. To generate varied degrees of dilation
(erosion) effects, instead of using a larger B, with a smaller
B repeatedly used to get the same effect. By increasing the
radius, one can perform these dilation and erosion
operations at multiple scales. Dilation (respectively the
erosion) of set M by nB reduces to n dilations by symmetric
element B. N iterations act as magnification factor. In turn,
recursive dilations and erosions can be performed by
increasing the size of the B recursively as M � nB and
M  nB. The properties of these two generic transforma-
tions imply that (1) neighboring water bodies merge under
iterative dilations and (2) clustered water bodies will be
disconnected during iterative erosions. Conversely, opening
transformation is defined as erosion of the set M by B
followed by dilation of eroded set (equation (4)).

M � nB ¼ ðM  nBÞ � nB ð4Þ

M (or X) � nB eliminates from sets M or X, all water bodies
or ZIs of size <n (with respect to B) that is water bodies or
ZIs inside which nB cannot fit. Figure 2 depicts these basic
morphological transformations at respective iterations for
better comprehension.

2.2. Derivation of Zones of Influence

[15] The zones within the closed stagnant boundary are
termed as influence zones. The effect of iterative dilations is
analogous to uniformly flooding water bodies from which
after sometime we achieve floodwater-extinguishing points,
through the combination of which forms ZI map. To derive
zones of influence (ZI), dilation transformation, which
mimics the flooding propagates from water bodies, can be
recursively performed to find out the stagnant points of
floodwater fronts coming from different water bodies that
extinguish. This is mathematically shown in equation (5) by
following skeletonization operation [Lantuejoul, 1978]. The
zones of influence derivation part has been explained via
skeletonization ofMc (set complement) to show the effect of
recursive dilations to extract the stagnant boundary between
floodwater fronts.

ZIn Mð Þ ¼ f Mc  nBð Þ n Mc  nBð Þ � B½ �g
n ¼ 0; 1; 2; . . . ;N ð5Þ

ZI Mð Þ ¼
[N
n¼0

ZIn Mð Þ ð6Þ

where the nth-level subsets of influence zones denoted by
ZIn(M) are obtained by subtracting the opened version of the
nth-level eroded set complement (M)c from the nth-level
eroded set complement (equation (5)). Finally, the union of
all the influence zone subsets (equation (6)) isolates for all
n = 0,1,2,. . ., N results the boundary of zones of influence of
water bodies. The limit size for recursive erosions indexed
with N denotes the maximum number of iterations by
octagonal element B after which, a further erosion erodes
Mc down to the empty set. This implies that N =
max{n:(Mc  nB) 6¼ ;} such that (Mc  (n + 1)B) = ;,
for all n > N.
[16] Further, on the basis of equations (5) and (6), I

construct zones of influence (X) (Figure 3b) of water
bodies (M). To avoid spurious open-ended branches in the
well-connected, stagnant boundary obtained by equations (5)
and (6), zones of influence, a fully automated thinning
operation [e.g., Serra, 1982; Tay et al., 2006] may be
performed. However, in the present paper, spurious open-
ended branches are interactively removed. The regions
embedded within the ZIs that also contain the associated
water bodies are referred henceforth to avoid notational
complexity as set X of the zones of influence. The water
bodies and ZIs that exist along the sides and corners and their
corresponding zones of influence are not taken into account.

2.3. Sifting of Water Bodies and Associated Zones of
Influence via Multiscale Opening

[17] To sift water bodies and ZIs, multiscale opening is
carried out n times (n being the radius of structuring element
or the cycle number of transformation), in other words
cascade of erosion-dilation of varied degrees is used to
filter the water bodies (and ZIs) smaller than the nB, which
is employed to distribute water bodies and ZIs according to
sizes. By producing structuring elements of increasing radii,
B, 2B, 3B, . . ., NB, we obtain a sequence of (M(or)X < B),
(M(or)X < 2B), (M(or)X < 3B), . . ., (M(or)X < NB)
representing the water bodies (and influence zones) respec-
tively smaller than B, 2B, 3B,. . ., NB. To distribute the water
bodies according to water bodies’ size, following multiscale-
opening transformation has been employed and the
corresponding equation is explained.

. . . � M � nþ 1ð ÞB½ � � M � nB½ � � . . . � M ð7Þ

In the above equation, areas of (M o nB) decrease as n
increases. Similarly, multiscale-opening transformation has
been implemented on set X containing the associated
influence zones to distribute them according to sizes. Since
M and X are finite, there are positive integers N = max{n:
(M (or X )  nB) 6¼ ;} such that (M (or X )  (n + 1)B) = ;,
for all n > N.
[18] For the present case study, the integer N respectively

for M and X include 9 and 33 cycles. This variation is
because zones of influence act like sets of corresponding
subsets i.e., water bodies.
[19] The information given in sections 2.1 and 2.2 are

essential to derive the zones of influence of associated water
bodies. After obtaining the zones of influence (Figure 3b)
from the water body data (Figure 3a), I computed (1) the
basic measures of both water bodies and associated influ-
ence zones and (2) certain statistical parameters from size-
distributed water bodies and ZIs. However, the analysis that
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follows this section relies on these basic measurements of
these two associated phenomena.

3. Allometry-Based Scaling Laws

[20] By employing basic measures (Table S1 and Figures
S1a and S1b of the auxiliary material1) such as area (A),
longitudinal length (Lk) and transverse length (L?) of each
water body and its corresponding influence zone, several
allometric relationships (Figures 4a–4d) are derived, and
find that these scaling exponents are universal type
(Table 1). In Figures 4a and 4b, I show plots of A as a
function of Lk for water bodies and their zones of influence.
Remarkably, for both water bodies and their zones of
influence, I find a power law scaling of the form Lk � Ah

with exponents respectively 0.58 and 0.52 (Figures 4a
and 4b). Similarly, in Figures 4c and 4d, I plot L? as a
function of Lk for both water bodies and their zones of
influence. I find H (L? � Lk

H) exponents of 0.87 and 0.96
respectively for water bodies and zones of influence indi-
cating relatively smaller h (A � Lk

h) exponent of 0.52 for
zones of influence, and higher exponent of 0.58 for water
bodies. This comparison further supports the notion that the
higher the degree of self-affinity the lower is the exponent
in the length-area relationship. These relations yield the
respective exponents h and H of 0.58 and 0.87 for water
bodies and 0.52 and 0.96 for the zones of water body
influence. Within all categories of water bodies, the size
bears a specific relationship to its zone of influence. I find

that the (1) water bodies that are subsets of their zones of
influence possess higher values of h than their zones of
influence and (2) water bodies possess lesser values of H
than their zones of influence.
[21] These two general observations are valid as larger

objects (such as zones of influence) when compared to their
subsets (i.e., water bodies) have a larger degree of self-
affinity. It is worth mentioning here that the majority of
water bodies have larger elongation ratios. These power law
exponents are universal type as they possess identical
scaling exponents at all scales as exhibited in certain
realistic and simulated environmental phenomena [e.g.,
Hurst, 1951; Hack, 1957; Mesa and Gupta, 1987; Robert
and Roy, 1990; Rosso et al., 1991; Ijjasz-Vasquez et al.,
1993; Sagar and Rao, 1995; Maritan et al., 1996a, 1996b;
Rodriguez-Iturbe and Rinaldo, 1997; Banavar et al., 1999;
Veitzer and Gupta, 2000; Maritan et al., 2002; Sagar and
Tien, 2004] (in these studies, transverse and longitudinal
lengths of realistic and model river basins are considered).
Table 1 compares our estimates with allometric power laws
known from other environmental geoscientific, biological
and ecological contexts. Quantitative comparison with other
geomorphologic systems is particularly revealing. The scal-
ing relationships for both water bodies and their zones of
influence between the h and H exponents are in accord with
the results reported by other researchers [Rodriguez-Iturbe
and Rinaldo, 1997; Maritan et al., 1996a, 1996b; Banavar
et al., 1999; Dodds and Rothman, 1999; Veitzer and Gupta,
2000; Maritan et al., 2002]. It is interesting to note the
significant deviations in the scaling laws for river basins
from the lower bound 1 + 2h/(1 + H) = 3/2 [Veitzer and

Figure 4. Allometric power law relationships: (a and b) length-area for water bodies and their zones of
influence and (c and d) transverse length–longitudinal length.

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/wr/
2006wr005075. Other auxiliary material files are in the HTML.

W02416 SAGAR: SCALING LAWS IN WATER BODIES

5 of 10

W02416



Gupta, 2000]. On the basis of these two exponents, the
following interesting observations are noted:
[22] 1. Relationship of h = 1/(1 + H) is very well fitted for

the water bodies and their zones of influence, which further
indicates that these two interrelated topologic phenomena
are self-affine as H < 1 (Table 1).
[23] 2. Estimates for 1 + 2h/(1 + H) yield 1.64 and 1.57

respectively for water bodies and their zones of influence
supporting the scaling relationship with exponent larger
than 3/2.
[24] 3. A quantity a = 1 + h, originally derived on the

basis of the allometric scaling relationship of mass-basin
metabolic rate [Maritan et al., 2002], for water bodies and
their zones of influence respectively yields 1.60 and 1.56.
[25] 4. Results further indicate that the degree of preserv-

ing geometric similarity is more in zones of influence than
in their corresponding water bodies. This may be attributed
to the fact that the exogenically sensitive water bodies have
larger elongation ratio.
[26] 5. Relationships between hM and hX, and HM and HX

(Figures 5a and 5b), however, yield low goodness of fit.
[27] 6. Dependency of water body size on ZI size yields a

power law relationship with exponent 0.58 implying a
relationship with slope 3/5 (Figure 5c).
[28] 7. The reason for having no correlation between the

h, H exponents of water bodies and associated zones of
influence (Figures 5a and 5b) is because there is no linear
relationship observed between the areas of water bodies and
their ZIs (Figure 5c). This further implies that the sizes of
the ZIs are not dependent on water bodies’ sizes. Hence it
could not be generalized that the smaller water bodies have
smaller ZIs (or) larger water bodies have larger ZIs. This
discrepancy may be attributed to the following fact: within
the data considered, there are several regions with sparsely
populated water bodies (both small- and large-size catego-
ries). In such regions, the ZIs of corresponding water bodies
with sparse population evidently occupy more area. This is
not true in the regions where the water bodies’ population is
denser. Perhaps, proper correlation may be observed, if one
considers the region with rather homogeneously populated
water bodies.
[29] In this section, the relationships derived are essen-

tially based on the measurements based on the areal and
linear aspects of water bodies and ZIs of all size categories.
However, in the section that follows, I show relationships
between the size-distributed water bodies and ZIs, and scale
imposed because of varied sizes of structuring element.

4. Size-Distribution-Based Scaling Laws

[30] I perform multiscale opening [Serra, 1982] (see
section 2.3) to sift the water bodies (Figure 3a) (and their

ZIs (Figure 3b)) that are smaller than the template by
leaving larger water bodies (and ZIs). I perform this sifting
recursively until the sections (Figures 3a and 3b) become
empty. I distinguish portions of M and X by sifting them
according to their sizes (see section 2.3). Number (N) and
contributing area (A) of the retained water bodies (NM, AM)
and their ZIs (NX, AX) after each cycle of opening transfor-

Table 1. Comparative Scaling Relationships

System h H a = 1 + h h = 1
1þH

1 + 2h
1þH

A versus N

Water bodies 0.60 0.86 1.60 0.54 1.64 1.41
Zones of influence 0.56 0.94 1.56 0.52 1.57 1.70
OCN (rectangular boundary)a 0.57 0.84 1.57 0.54 1.57 –
OCN (fractal boundary)a 0.56 0.88 1.56 0.53 1.56 –
F-SCNb 0.55 0.95 0.55 0.52 1.54 –

aOptimal channel network.
bFractal skeletal based channel network. Source: Sagar et al. [1998].

Figure 5. (a) Hack’s exponents, (b) Hurst exponents of
water bodies and their zones of influence, and (c) areas of
water bodies and ZIs.
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mation are computed (Table 2). I find simple scaling power
law relationships between the N and A of water bodies and
their zones of influence (Figures 6a and 6b) that could be
sifted with increasing radius (r) of templates. For water
bodies and their zones of influence:
[31] 1. The number-area-based power law relationships,

supporting universality class, respectively in the form of
NM � AM

1.41 and NX � AX
1.70 (Figures 6a and 6b). This

relationship translates a physical phenomenon of drought
under the general assumption that the smaller water bodies
easily get affected by drought condition. With increasing
drought conditions, water bodies of increasing size catego-
ries would be vanished. The multiscale-opening transfor-
mation mimics the impact of increasing drought. However,
there may not be any significant change in the ZI power
laws as its area gets least affected.
[32] 2. Results show that the power law exponent in water

bodies is smaller than that of their zones of influence. This
is due to fact that zones of influence act as supersets of their
water bodies.
[33] Size distributions and their density functions are

estimated as follows to find the extent of deviations between
size categories, in terms of power law that I derived between
the size of water body and its corresponding ZI. To compute
the size distribution functions, normalized size and number

distribution functions for water bodies and their zones of
influence are derived as

S kð Þ ¼ 1� A M orð ÞX < nBð Þ
A M orð ÞXð Þ

� �
; ð8Þ

where n2[0, N], numerator and denominator respectively
represent sum of all the water body or ZI elements larger
than the specified size of reference template (B) of size n,
and total area of all the water bodies or ZIs of all size
categories. Using these normalized distribution functions of
both water bodies and their zones of influence, I compute
the probability density function to describe the size
attributes of individual water bodies and their ZIs as

GS kð Þ ¼ S k þ 1ð Þ � S kð Þ½ � ð9Þ

[34] From normalized size (and number) distributions and
their density functions of water bodies and corresponding
zones of influence, the following observations are made:
(1) Residues of M and X by removing portions smaller than
the threshold template size. (2) Smaller size categories of
water bodies and their influence zones relatively occupy
more area, and find significant drop in surface area between
two consecutive levels of siftings (Figure 6c) indicating that
the region contains water bodies and influence zones of
comparable size to the smaller level of sifting. (3) A local
maximum in the size distribution plots (Figure 6c) that is
equivalent to the first derivative of the surface area at a
given scale indicates the presence of many water bodies at
that scale. (4) Significant similarity is obvious in the general
trends of the plots (Figure 6c) for surface water bodies and
their ZIs (Table 2) indicating certain spatial relationship
between these two intertwined topological phenomena; this
is a generalized relationship to a joint probability density
and show that fluctuations about scaling are substantial.
[35] In addition to these scaling relationships, I further

extend to derive scaling laws between the correlation sums
(C(r)) of areas (and number) and radius of structuring
template. To compute correlation sums of areas of water
bodies (and ZIs), the ratio between the area of water bodies
(and ZIs) that could be filtered with a template with radius r,
and the total area squared of water bodies (and ZIs) is
considered and expressed as

AfM orð ÞX < rBg
r2ð Þ

� �
ð10Þ

[36] By replacing the areas (A) with the number (N) of
isolated water bodies (and ZIs), in the above equation,
correlation sums of number are computed as

NfM orð ÞX < rBg
r2ð Þ

� �
ð11Þ

[37] I plot graphs for size distribution and discrete first
derivative functions of sizes of water bodies and their zones
of influence. These relationships (Figure 7a) yield the power
law exponents for water bodies (M) and their zones of
influence (X) respectively for the following: area-C(r)M �
(r)1.26; area-C(r)X � (r)1.16; number-C(r)M � (r)0.94; and

Table 2. Areas and Number of Surface Water Bodies and Their

Zones of Influence After Respective Degree of Siftinga

Cycle

Structuring
Element
Size

Area of
Water Bodies
(and ZIs)b

Number of
Water Bodies
(and ZIs)

0 0 163,783 (1,234,566) 645 (645)
1 5 155,250 (1,213,515) 580 (621)
2 9 100,909 (1,171,792) 288 (620)
3 13 54,807 (1,127,634) 121 (587)
4 17 28,581 (1,061,809) 41 (523)
5 21 15,989 (976,057) 15 (445)
6 25 12,218 (871,559) 10 (367)
7 29 6801 (752,042) 6 (330)
8 33 4643 (632,944) 3 (225)
9 37 1358 (523,085) 1 (152)
10 41 0 (442,187) 0 (109)
11 45 0 (369,017) 0 (84)
12 49 0 (313,898) 0 (65)
13 53 0 (284,865) 0 (62)
14 57 0 (239,058) 0 (52)
15 61 0 (194,656) 0 (33)
16 65 0 (173,284) 0 (28)
17 69 0 (157,351) 0 (24)
18 73 0 (125,092) 0 (17)
19 77 0 (112,670) 0 (15)
20 81 0 (103,365) 0 (14)
21 85 0 (76,682) 0 (10)
22 89 0 (66,530) 0 (7)
23 93 0 (65,256) 0 (6)
24 97 0 (55,234) 0 (5)
25 101 0 (43,606) 0 (2)
26 105 0 (40,588) 0 (2)
27 109 0 (29,986) 0 (1)
28 113 0 (29,710) 0 (1)
29 117 0 (29,337) 0 (1)
30 121 0 (28,951) 0 (1)
31 125 0 (28,306) 0 (1)
32 129 0 (27,449) 0 (1)
33 133 0 (26,665) 0 (1)

aZIs, zones of influence.
bAreas are given in pixel units.
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number-C(r)X � (r)1.03, further indicating that the number-
wise distributions of both water bodies and ZIs is more
homogeneous than that of the area-wise distribution. Fur-
ther, a power law relationship is derived via a log-log plot
between (1/r), and the ratios of areas (and numbers) of water
bodies and their zones of influence retained after progres-
sive sifting by means of increasing radii of templates, and
the squared radius (r2) of the template (Figure 7b) (see the
description for Figure 7b).

5. Conclusions

[38] On the basis of the results derived from allometry-
and size-distribution-based power laws, which are in accor-
dance with universal power laws, the following are inferred.
[39] 1. Power laws that can model the sizes of the

influence zones are overestimated than that of associated
water bodies.
[40] 2. Water bodies and associated zones of influence

belong to different universality classes (Figures 4a–4d, 6a,
and 6b), and further emphasize that certain scaling rules
may apply to both exogenically sensitive and insensitive
geomorphic phenomena.
[41] 3. Correlation is not obvious between the h,

H exponents (Figures 5a and 5b) of water bodies and
associated zones of influence, as there is no size-based
relationship between the ZIs and water bodies (Figure 5c).

This poor correlation may be attributed to the fact that,
within the data considered, there are several regions with
sparsely populated water bodies (both small and larger size
categories). In such regions, the ZIs of corresponding water
bodies with sparse population evidently occupy more area.
This is not true in the regions where the water bodies’
population is denser.
[42] 4. Significant results derived as power laws based on

distributions (size and number) of water bodies and zones of
influence via multiscale-opening transformation translate
probably a physical phenomenon of drought. This relation-
ship (Figures 6a and 6b) translates a physical phenomenon
of drought under the general assumption that the smaller
water bodies easily get affected by drought condition. With
increasing drought conditions, exgogenically sensitive water
bodies of increasing size categories would be vanished.
However, there may not be any significant change in the
ZI power laws as its area gets least affected by any exogenic
process. It is worth monitoring the extent of deviations in the
scaling laws, as one of the two phenomena is exogenically
sensitive.
[43] 5. Number and areas of the size-distributed water

bodies and ZIs plotted as functions of size of the structuring
template employed to distribute also reveal different classes
of universality characters (Figures 7a and 7b).

Figure 6. (a and b) Number-area relationship for water bodies and their ZIs that yield power laws of
1.41 and 1.70, respectively, and (c) normalized size and number distribution and density functions of
water bodies and ZIs plotted against the size of the octagon (eight series of points). The size distribution
plots give information about the size distribution of water bodies and their influence zones:
approximately 50,000 pixels belong to water bodies of 5-pixel diameter, 50,000 pixels belong to water
bodies of 10-pixel diameter, and 25,000 pixels belong to water bodies of 11-pixel diameter. Local
maxima in the distribution spectra at a given scale indicate the presence of many water bodies and
influence zones at that scale.
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[44] These scaling laws provide several new insights to
understand the relationships between water bodies and ZIs
in terms of the information about form and function. Further
adherence of water bodies and their zones of influence to
regular scaling rules improve our understanding in model-
ing and reconstruction of environmentally dependent geo-
morphic system processes. The derived relationships can
account for scaling laws and may serve as the basis for new
insights of investigations. It is hoped that scaling relation-
ships for water bodies and their influence zones will provide
a way to better understanding of paleoenvironments and
their geomorphic constitutions.

Notation

Zn Euclidean discrete n-dimensional space.
m, x, b points of Z 2.
M, X, B subsets of Z 2; M is set containing

water bodies, X is set containing zones
of influence, M � X indicates that
water bodies are subsets of zones of
influence.

Mc complement of M in Z 2.

[, \, \, � logical union, logical intersection,
logical difference, and improper
subset.

M [ X union of M and X.
M \ X intersection of M and X.
M \ X set difference of M and X.

nB nth-size structuring element symmetric
with respect to origin at center.

1B primitive element with origin at center,
and radius 1.

NB largest size of structuring element.
�, , o symbols for dilation, erosion, and

opening.
M � B = [b2BMb morphological dilation of M with re-

spect to B.
; empty set.
n iteration/cycle number (or radius

of structuring element, where n =
0, 1, 2,. . ., N).

N maximum iteration/cycle number
required transforming a set to the state
of idempotence.

A(�) finite set of cardinality.
Lk longitudinal length.
L? transverse length.
H exponent derived from Lk and L?.
h exponent derived from Lk and A.

hM exponent h for water bodies.
hX exponent h for zones of influence.
HM exponent H for water bodies.
HX exponent H for zones of influence.
NM number of water bodies.
AM area of water bodies.
NX number of zones of influence.
AX area of zones of influence.
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