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[1] We provide a topologically viable model that is
geomorphologically realistic from the point of its
Hortonity and general allometric scaling laws. To illustrate
this, we consider a fractal binary basin, generated in such a
way that it follows certain postulates, and decompose it into
various coded topologically prominent regions the union of
which is defined as geomorphologically realistic Fractal-
DEM. We derive two unique topological networks from this
Hortonian fractal DEM based on which we derive allometric
power-law relationships among the basic measures of
decomposed sub-basins of all orders ranging from w = 1 to
w = W. Our results are in good accord with optimal channel
networks and natural river basins. INDEX TERMS: 1848

Hydrology: Networks; 3250 Mathematical Geophysics: Fractals

and multifractals; 3210 Mathematical Geophysics: Modeling; 1824

Hydrology: Geomorphology (1625). Citation: Sagar, B. S. D.,

and T. L. Tien (2004), Allometric power-law relationships in a

Hortonian fractal digital elevation model, Geophys. Res. Lett., 31,

L06501, doi:10.1029/2003GL019093.

1. Introduction

[2] Self-affine properties of drainage basin can better
describe the fluvial systems on earth [Tarboton et al.,
1988; Rodriguez-Iturbe and Rinaldo, 1997]. Topological
or structural organization of the landscape within such a
drainage basin determines two unique geomorphic net-
works, i.e., loopless channel and loop-like ridge connectivity
networks. Former type of network is the source information
from which popular Hortonian laws of number and mean
channel lengths can be understood. However, the loop-like
network, that is the farthest from channel network, in
between which the loopless network exists. In other words,
stream channels flow between ridges that are Brownian
motion-like [Takayasu, 1990]. In a spatially distributed
Digital Elevation Model (DEM), elevation contours possess
L and V shaped crenulations: supremums and infimums that
testify the presence of ridge and valley connectivity net-
works. There is a vast number of network types that follow
allometric power-law relationships [Maritan et al., 1996a,
1996b; Rodriguez-Iturbe and Rinaldo, 1997; Banavar et al.,
1999; Veitzer and Gupta, 2000; Maritan et al., 2002;
Banavar et al., 2002], out of which the spatial organization
of geophysical network is primarily determined by these

two types of crenulations. We employ two unique connec-
tivity networks extracted from a Hortonian fractal DEM, the
internal topological organization of which is simulated
through morphological decomposition procedure to verify
the allometric power-laws. Specifically, we employ:
[3] (a) binary morphological erosion and dilation trans-

formations [Serra, 1982] and certain logical operations to
generate internal topological organization within a basin of
defined fractal boundary;
[4] (b) gray level morphological erosion and dilation

transformations to extract two unique connectivity networks
from the DEM, which is generated at the step (a); and
[5] (c) basic measures computed from these networks and

sub-basins decomposed further from this F-DEM to derive
allometric power-laws.

2. Fractal DEM and Unique Connectivity
Networks

[6] We define the Hortonian fractal Digital Elevation
Model (DEM) M of a fluvial basin as a finite subset of
two-dimensional space IR2 that can have values between 0
and 255, each representing spatially distributed elevation
region. We simulate this DEM by considering a binary
fractal basin (X) that possesses 1s and 0s respectively
representing topological space of the basin and its comple-
ment. We consider a specific generating mechanism to
simulate boundaries of binary fractal basin at different
scales by considering two postulates (a) the area of the
basin is constant under succession of scale changes, and
(b) the length of the channel network should be varied under
the succession of scale change to make the basin Hortonian.
We decompose this binary fractal basin into topologically
prominent regions (TPRs) by employing morphological
erosions, dilations, and logical difference and union oper-
ations to simulate fractal DEM (F-DEM). The simulation of
internal topology of the basin within a defined geometric
boundary, referred to as gray level fractal DEM mathemat-
ically defined by

M ¼
[N

n¼0
X�Snð Þ X�Snð Þ�S½ ��Sf gf g�Snf g; ð1Þ

where, �, �, X, S, and n, respectively are morphological
erosion, dilation, binary basin, a discrete rule with certain
characteristic information that gets translated over X, and
size of this discrete rule. X\Y is the part of X that is not in Y.
X and S are sets in Euclidean space with elements x and s,
respectively, x = (x1,. . ., xN) and s = (s1,. . ., sN) being
N-tuples of element co-ordinates. Five steps in equation (1)
include:
[7] (i) Successive erosion frontlines are generated via

(X�Sn) by increasing the size of structuring element. The
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erosion of X with S is defined as the set of points x such that
the translated Sx is contained in X and is mathematically
expressed as X�S = {x:Sx
X) = \s2SXs, where 
S =
{
s:s2S}, i.e., S rotated 180� about the origin, and Sx =
{s + xjs2S}. We perform erosions iteratively to generate
erosion frontlines, akin to contours, within a binary fractal
basin, where it is obvious to find the existence of crenula-
tions-like supremums and infimums that are the flow paths
of two unique connectivity networks.
[8] (ii) Smoothening of the erosion frontlines is achieved

via [(X�Sn)�S]�S. Here, the dilation combines the eroded
version of the eroded binary basin achieved at step (i) and S.
The dilation by S is the set of all possible vector sums of
pairs of elements, one coming from eroded version and the
other from S, and is defined as the set of all points x such

that Sx intersects X, mathematically depicted as X�S =
{x:Sx\X 6¼ Ø) = [s2SXs.
[9] (iii) Various orders of valley connectivity subsets

ranging from n = 0 to N are isolated from each erosion
frontline by subtracting the resultant information achieved
in step (ii) from step (i).
[10] (iv) TPRs are generated by dilating the resultant

information, achieved at step (iii) by Sn. This is an iterative
procedure till the whole basin is converted into TPRs. Each
TPR is assigned a specific shade assuming that spatially
distributed TPRs are akin to spatially distributed elevation
regions, and
[11] (v) Various orders of coded TPRs thus obtained are

combined to achieve the DEM. By employing these sequen-
tial steps, we generate a self-affine fractal DEM (Figure 1a).
[12] Cascades of the erosion and dilation transformations

possess noninvertible properties. The impact of various
characteristic information of S, such as shape, size, origin
and direction are redefined from the point of geomorpho-
logic dynamics [Sagar et al., 1998a]. We consider the
octagonal S that is symmetric from the point of all charac-
teristic information. Varied topological compositions of
DEM can be simulated by changing the characteristics of
discrete rule to further visualize realistic and unrealistic
landscapes.
[13] Further, we employ gray level morphological ero-

sions and dilations to isolate all supremums and infimums
from all erosion frontlines of all spatially distributed eleva-
tion regions of simulated self-affine fractal DEM (Figure 1a)
to extract loop-like and loopless ridge and channel connec-
tivity networks. The channel network from this DEM is
defined as

CHðMÞ ¼
[N
n¼0

CHnðMÞ; ð2Þ

where the channel network subsets of nth order CHn (M) are
extracted by following the morphological transformations as
{(M�Sn)}\{[(M�Sn)�S]�S}. Although erosions and dila-
tions are represented similarly as in the case of decomposi-
tion, these gray scale erosions and dilations are obtained by
computing minima and maxima [see Serra, 1982] overM by
moving window–the structuring element of size 3 � 3.
These transformations are recursively performed on M by
increasing the size of structuring element to obtain various
orders of channel subsets. The possible channel network
exists within F-DEM referred to as fractal-skeletal based
channel network (F-SCN) follows Horton’s laws [Sagar et
al., 1998b; Sagar and Murthy, 2000; Sagar et al., 2001;
Sagar et al., 2003]. The ridge connectivity network subsets
of nth order is defined as

RIDðMÞ ¼
[N
n¼0

CHc
nðMÞ

� �
; ð3Þ

where ridge network subsets of nth order (RIDn(M)) are
obtained by {(CHc�Sn)}\{[(CH

c�Sn)�S]�S} in which the
complement of CH(M) is used to generate ridge connectiv-
ity network. The logical unions of channel and ridge
network subsets obtained from M through equations (2) and
(3) yield respectively the channel and ridge connectivity

Figure 1. (a). Simulated fractal DEM achieved through
morphological decomposition procedure, (b) Loop-like
ridge connectivity and loopless channel connectivity net-
works, and (c) Sub-basins of 6th order basin. See color
version of this figure in the HTML.
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networks. The union of these two connectivity networks is
depicted diagrammatically (Figure 1b) andmathematically as

RIDðMÞ½ � [ CHðMÞ½ � ð4Þ

[14] Equation (4) provides a basis to estimate the con-
tributing area of individual segments of sub-basins of all
orders ranging from w to W. The considered F-DEM
(Figure 1a) produces 6th order branched channel network
that follows Horton’s laws. The fractal dimension computed
by considering the two topological quantities such as
bifurcation and mean channel length ratios yields a value
of 1.76, in agreement with natural river basins. The number
of decomposed sub-basins (Figure 1c) of respective orders
from the simulated 6th order F-DEM include two 5th, five
4th, ten 3rd, 36 2nd, and 86 1st order basins.

3. Basic Measures

[15] We redefine basic measures and discuss from the
point of morphological and topological bases. The total

channel organization is defined as
SW
w¼1

{[CH(wi=1
n , W)]M}.

Area (A) contributed by segment i of order w within the
basin of order W is computed as the area embedded within
the ridges that surround a segment i of order w, CH(wi, W).
This contributing area of segment i of order w, and its
corresponding main length in longitudinal direction are
respectively A[CH(wi, W)] and Lmc[CH(wi, W)]. The total
channel length and its total contributing area in a basin of

order W are respectively computed as

� PW
wn
i¼1

¼1

L[CH(wi, W) ]
�

and

� PW
wn
i¼1

¼1

A[CH(wi, W)]
�
. The perimeter (P) of the sub-

basin is defined as

� PW
wn
i¼1

¼1

P[CH(wi, W)]
�
, and the total

perimeter of all the sub-basins is equivalent to the total ridge
length. We compute these basic measures in addition to
transverse length (L?) and longitudinal length (Lk) for all
sub-basins ranging from order 1 to W for all segments
ranging from 1 to n (Table A1)1. These mathematical
formulations provide morphological and topological bases

to derive the allometric power-law exponents for each
channel segment of each order within a basin (M) of order W.

4. Scaling Laws

[16] We employ these measures estimated precisely for
all the decomposed self-affine fractal sub-basins ranging
from order 1 to W for all segments ranging from 1 to n. By
employing these measures, we derive several allometric
relationships, and find that these exponents follow universal
power-law relationships (Table 1). We observe significant
deviations among all sub-basins of all segments within a
specific stream order basin. We show the allometric rela-
tions of A and Lmc, A and P, L? and Lk, and L? and Lmc
(Figure 2) for F-DEM. For basins, it is reported that the
relationship is Lmc � (A)h, with the parameter h as Hack’s
exponent, i.e., 0.56 < h < 0.6 [Hack, 1957; Maritan et al.,
1996b]. Allometric power laws, in particular Hack’s law and
Horton’s law of stream area, are based on the contributing
area due to corresponding stream segments. We define a
power law akin toHack’s exponent for the sub-basins of order
w by taking the length of a segment i of the basin with order w,
and its contributing area into consideration. From this, we
show allometric relationship of sub-basins as {Lmc [CH(wi,
W)]}� {A[CH(wi, W)]}

h, where h is Hack’s exponent, w = 1,
2,. . ., W, and i = 1, 2,. . ., n. For all the sub-basins, we find a
power-law scaling of the form {Lk[CH(wi,W)]}� {A[CH(wi,

Figure 2. Allometric relationships among basic measures.
(a) squares show that the relationship between Lk and L?,
and triangles indicate relationship between Lk and Lmc. Note
that the former relationship enables the self-affinity of the
basin and its sub-basins. (b) Triangles show the area-
transverse length relation. The crosses indicate the area-
main channel length relationship. The area – perimeter
relationship is shown with diamonds, squares show the
relationship between area and longitudinal relationship. The
area, perimeter and mean length are in units of pixels, and
Relationships between the logarithm of area of the basin and
a (with open stars), h (with plus), H (with solid stars), and b
(with minus). See color version of this figure in the HTML.

Table 1. Power-Law Values Among Allometric Measures of

F-DEM

Relations Notations For All Orders

Basin’s Order

1 2 3 4 5 6

A and Lmc h 0.55 0.502 0.56 0.56 0.55 0.55 0.56
A and P a 1.35 1.31 1.36 1.41 1.44 1.48 1.46
P and Lmc b 1.39 1.51 1.32 1.28 1.26 1.23 1.23
Lmc and Lll – 0.97 0.92 1.01 1.04 1.03 0.94 0.95
L? and Lll H 0.95 0.94 0.94 0.96 0.98 0.94 0.98
a and h – 0.39 0.38 0.41 0.39 0.38 0.37 0.38
H and h – 1.80 1.87 1.70 1.74 1.77 1.80 1.80
b and h – 1.34 1.30 1.36 1.41 1.44 1.48 1.46
b and a – 0.52 0.50 0.55 0.55 0.55 0.55 0.53
2h DLmc 1.06 1.00 1.11 1.11 1.10 1.10 1.12
2/a DP 1.48 1.53 1.47 1.42 1.39 1.35 1.37
DLmc and DP DP 0.70 0.65 0.75 0.78 0.80 0.81 0.81
1 + DLmc

1þH
– 1.55 1.52 1.57 1.59 1.56 1.57 1.57

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2003GL019093.
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W)]}hwhere h is in the range of 0.502–0.56 (see Table 1). We
find that the relationship of h = 1

1þH
is very well fitted for the

sub-basins, and further indicates that these sub-basins rang-
ing from w toW are self-affine basins as the L?� Lk

HwithH <
1 (Table 1). We show the allometric power-law relationships
for main channel lengths Lmc vs A, P vs A, Lmc vs P, and L?
vs Lk respectively with notations h, a, b, and H. These
relations yield the power-law values respectively 0.53, 1.35,
1.38 and 0.95. In several studies, power law relationships are
given by considering the similar order (or) higher order
Hortonian river basins. However, to investigate the extent
of deviations from lower order basins to higher order basin,
we provide the relationships among the basic measures of not
only higher order basin, but sub-basins within the basin with
order W as well. It is interesting to note significant deviations
in the scaling laws from the lower bound 1 + DLmc

1þH
= 3

2
. Infinite

topological random networks have asymptotically h = 0.5
[Veitzer and Gupta, 2002], and hence 1 + DLmc

1þH
= 3

2
. Table 1

contains our estimates for 1 + DLmc

1þH
along with other allometric

power-law exponents derived from relationships among
basic measures of the F-DEM and its decomposed sub-
basins with their corresponding main lengths (supporting
Figures 4a and 4b)1. For better understanding of goodness of
the encountered relations, we provide some important
graphical representations in Figure 2 (and in supporting
Figures 3a–3j)1. Further, we consider these exponents to
show relationships among exponents derived for Hortonian
self-affine fractal DEM. Table 2 depicts comparisons be-
tween our estimates and important allometric power-laws
derived for Optimal Channel Networks (OCNs) and natural
river basins. These estimates are in agreement with expo-
nents estimated for loopless networks such as rivers, exact
river networks achieved through computer simulations.
Based on these power laws and generalized Horton laws,
which are in accordance with universal power laws (Tables 1
and 2), it is inferred that this F-DEM and its corresponding
sub-basins are geomorphologically realistic as OCNs and
realistic river networks. Table 2 depicts comparative scaling
laws that are available for the natural rivers, optimal channel
networks with that of allometric power law exponents
derived collectively from F-DEM and F-SCNs. From this
comparison, it is inferred that F-SCNs and F-DEM also
possess fractal properties and universal allometric relation-
ships, as in the case of OCNs and realistic river networks.

5. Conclusions

[17] The allometric relationships of sub-basins decom-
posed with morphology and topology bases complement
recent results derived from OCNs, random self-similar net-
works (RSNs) in addition to similarities from the point of their
Hortonian nature. These results demonstrate the character-
istics of sub-basins of a single Hortonian F-DEM through
allometric power-law relationships and further indicate
F-SCNs, OCNs, and natural rivers are of universality class.

Using certain concepts from mathematical morphology
[Serra, 1982], it is possible to reconstruct the basin and its
topology from the network. From such a reconstructed basin,
it is also possible to attain the network much similar to the
network, based on which basin is reconstructed. The similar-
ities in the OCN, RSN, and the networks extracted from the
reconstructed basins provide an approach to relate physical
mechanisms with discrete rules, and may facilitate further
comparative analysis. We hypothesize that the allometric
power-laws derived from basins reconstructed from the var-
ious types of networks of various orders, existence of which
may be due to different types of landscape organization,
provide additional indices. What is most interesting is that
the derivation of a discrete rule from the networks and their
corresponding basins, whether they are realistic, OCNs or
F-SCNs, to accurately reconstruct the landscape organization
from network. The investigation of the landscape organiza-
tions and their corresponding networks that are (not) follow-
ing universal power laws may provide potentially valuable
insights in understanding different channelization processes.
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Table 2. Scaling Exponents for Several Networks

Network DLmc h H 1 + DLmc

1þH

Scheideggar 1 2/3 1 5/3
Peono 1 1/2 1 3/2
OCN (Fractal) 1.05 0.56 0.88 1.56
F-SCN 1.06 0.55 0.95 1.54
Tirso (IT) 1.05 0.53 0.94 1.54
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