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Technical note

Estimation of number± area± frequency dimensions of surface
water bodies

B. S. DAYA SAGAR² and D. SRINIVAS
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of Geoengineering, Andhra University, Visakhapatnam 530003, India

(Received 19 August 1998 )

Abstract. This paper proposes a technique that includes a set of mathematical
morphological transformations to estimate the frequency dimension. The dimen-
sion computed through a power law relationship is tallied with the dimension
computed through a correlational plot. This technique is demonstrated on a two-
dimensional section embodying a large number of surface water bodies, extracted
from remotely sensed data, situated randomly, and the frequency dimension (D)
for surface water bodies yields straight-line dependence of lnC(r) (correlational
integral) on ln(r) (radius of structuring template). The correlational integral is
computed for two aspects by considering the number of water bodies and their
corresponding occupied areas. The number± frequency dimension and the area±
frequency dimension computed through correlational plots yield straight-line
dependencies with slopes that are greater than unity but less than 2.0 (1.3 and
1.7, respectively).

1. Introduction
A section of surface water bodies is one of the best examples of a natural fractal

occurring in any landscape. Several properties such as possession of non-integral
dimensionality and self-similarity characterize the fractals. Several methods are avail-
able to compute the dimensions of such fractals. Recent studies on surface water
bodies applying mathematical techniques include automatic computation of dimen-
sional parameters (Sagar et al. 1995a), distribution of surface water bodies according
to their shapes and sizes (Sagar et al. 1995b), ranking of lakes according to the
dynamical behaviour in the time domain (Sagar and Rao 1995 a, b, c), fractal-based
dimensional analysis (Sagar 1994, Sagar and Rao 1995d), morphological dynamical
behaviour of lakes (Sagar et al. 1998) and fractal and morphometric relationship of
the topological network of water bodies (Sagar et al. 1999). In all these studies, the
application of mathematical morphology, fractals and non-linear concepts are shown
on surface water bodies extracted from remotely sensed data. In the present paper,
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one of these mathematical techniques is used to compute the frequency dimension,
which can be taken as quantifying parameters in terms of analytical values to
characterize the fractals that come as d̀ust’Ð isolated points, thinly sprinkled over
some range of space. The idea for this study was based on the technique of
Grassberger and Procaccia (1983) to compute the correlation dimension of time
series data of chaotic signals, which is one of the most widely used dimensions and
is more accessible experimentally, in particular to compute the dimension of strange
attractors which more often possess the dust-like objects of various lengths (e.g.
Henon attractor). The proposed technique to compute the frequency dimension is
based on mathematical morphological transformations. It is demonstrated on a
section of water bodies, being one of the best examples of dust-like sprinkled objects
in nature. This dimension, which is less than the geometric fractal dimension and
information dimension, can be computed according to a power law:

C(r)~rD (1)

where C(r) is the correlational integral, r is the radius and D is the correlation
dimension.

2. Experimental

A discrete binary image (M ) that contained water bodies, de® ned as a ® nite
subset of IR2 , was used. The geometrical properties of M, which contained water
bodies (set) and non-water bodies (set compliment), were subjected to morphological
functionals by means of a de® ned sub-image (or kernel) that is here termed a
structuring template (S). A bounded S ( ® gure 1) that possesses a designed shape that
is thought of as a probe of M was used. Constraints that correspond to the four
principles of the theory of mathematical morphology (Serra and Luc Vincent 1982),
such as invariance under translation, compatibility with change of scale, local know-
ledge and the upper semi-continuity, are important on morphological transforma-
tionsÐ erosion to shrink, dilation to expand and cascade processes performed by
means of structuring templates that are represented by a compact subset of Euclidean
space. M and S are sets of Euclidean space with elements m and s, respectively; m =
(m1 . . ., mn ) and s = (s1 . . ., sn) being n-tuple elements, morphological set transforma-
tions can be performed on M by means of S. Dilation and erosion combines and
subtracts, respectively, two sets using vector addition and subtraction of set elements,
one coming from M and the other from S. The dilation (equation 2) and erosion
(equation 3) of M with S are de® ned as the set of all points m̀’ that the translated
Sm intersects and contains in M:

M CS={m: Sm > M}= < s× SMs (2)

M D S={m: Smk M}= > s× SM s (3)

where S = {s: s×S}, i.e. S rotated 180ß around the origin and S = SÃ in the present
context; hence, dilation and erosion are akin to Minkowski addition and subtraction
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Figure 1. Circle type of structuring template.
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(Maragos and Schafer 1986). S with its characteristic information is shownschematic-
ally in ® gure 1.

The size of S can be increased as

SCSCSC . ..CS=Sn (4)

According to equation (4), multiscale dilation and erosion is written as

(M CS)CSC ...CS=MCSn

(M D S)D SD ...D S=MD Sn
H (5)

3. A sample study

These basic morphological set transformations were used to compute the fre-
quency dimension of a set M, which, in discrete form, contained a large number
(1718) of randomly situated surface water bodies of various sizes extracted from
IRS-1C remotely sensed data of a region between the geographical coordinates 18ß 00¾
and 18ß 30¾ N and 83ß 15¾ and 83ß 45¾ E. Morphological set transformations were
performed systematically to distribute these surface water bodies and to compute
the number according to their sizes. This distribution procedure was based on the
size of S. During the cascade of erosion± dilation, the water bodies that are smaller
than the size of S vanish by leaving the bigger water bodies. The number and the
corresponding areas of vanished water bodies are denoted, respectively, as
N{M/(MD Sn)CSn} or N{M/(MoSn)} and A{M/(MoSn)}, where a solidus denotes set
di�erence. The number and areal extents of retained water bodies after cascade of
erosion± dilation were used to de® ne the number± area± correlational integrals
(Grassberger and Procaccia 1983) or number± area± distribution functions (Del® ner
1972).

To determine the number± frequency dimension (D1 ), the number of water bodies
that have a smaller (Euclidean) diameter than some given diameter (2r) of S were
counted. As 2r(Sn ) varies, so does the relative count N; then, the correlational integral
(C(r)) (Grassberger and Procaccia 1983, Shroeder 1991) was de® ned as the total
count divided by the squared number of water bodies. From the notion of C(r)
introduced by Grassberger and Procaccia (1983, Shroeder 1991), it was rede® ned
(equation 6) in morphological terms as the ratio between the number of water bodies
vanished after the cascade of erosion± dilation by means of S of radius r(Sn ) and the
total number of surface water bodies of all sizes. Similarly, by computing the occupied
area of corresponding water bodies, the area± frequency dimension (D2 ) was computed
by following equation (8). C(r) (Grassberger and Procaccia 1983) was introduced a
decade earlier with the terms number± area± distribution functions by Del® ner (1972).

number± C[r(Sn )]=
N {M/ (M o Sn)}

[N (M )]2 (6)

area± C[r(Sn)]=
A {M/ (M o Sn)}

[A (M )]2 (7)

where {M/(MoSn)} is the set di�erence between the original set, containing water
bodies of several sizes, and the ® ltered water bodies after cascade of erosion± dilation
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transformation. The radius of the bounded S ( ® gure 1) that traverses the origin is
denoted as r (Sn), and D1 and D2 are then de® ned by the initial slope:

D=
lnC[r(Sn)]

lnr(Sn)
r(Sn)> r(Sn

Õ
1 )> .. .> r(S) (8)

4. Results and conclusions

A set theory based transformation, cascade of erosion± dilation, was adopted here
to compute the frequency dimension. This transformation ® lters the water bodies
that are smaller than the size of the structuring template, given in table 1. The
computed number± area± correlational integrals are also shown in table 1. In ® gure 2,
the logarithm of these correlational integrals [lnC(r)] are plotted as functions of the
logarithm of a radius of structuring template [ln(r)], which according to the power
law relation (equation 1) should yield straight lines of positive slopes. The slopes of
these lines are the frequency dimensions D1 and D2 . Figure 2 shows the experimental
determination of D1 and D2 for the randomly situated surface water bodies which
yield straight-line dependence of lnN{M/(MoSn)}/[N(M)]2 and A{M/(MoSn )}/
[A(M )]2 on lnr(Sn) with slopes D1=1.3069 and D2 =1.7. It is deduced that the
computed frequency dimension through the correlation integral introduced by
Grassberger and Procaccia (1983) is exactly similar to the number and area distribu-
tion functions de® ned by Del® ner (1972) in the context of grain size analysis. It is
expected that this new technique that demonstrates the computation of frequency
dimension of the randomly situated objects of various sizes and shapes (e.g. water
bodies, river basins, channel networks, islands, hills and certain geomorphic features)
will emerge strongly as more attention is focused on the usage of morphological set
transformations in the contexts of physical and geophysical problems. In any case,
the estimation of frequency dimension is quite simple and can be automatically
performed on the data extracted from remotely sensed digital data.
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Table 1. Distributed surface water bodies and correlational integrals.

Diameter of Areas of
structuring Number of vanished
template in vanished surface water bodies Number± correlation Area± correlational
pixel units water bodies in pixel units integral integral

5 386 17019 0.00013078 0.000001718011
7 787 21299 0.000266642 0.000002150091
9 1059 37041 0.000358798 0.000003739165

11 1262 67328 0.000427575 0.000006796537
13 1420 76583 0.000481107 0.000007730798
17 1718 99530 0.000582072 0.000010047221
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Figure 2. Determination of frequency dimensions fromthe number± area± correlation integral.
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