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Digital elevation models (DEMs) provide rich clues about various geophysical

and geomorphologic processes. These clues include conspicuous protrusions and

intrusions of foreground and background portions that testify the presence of

channels and ridges in DEMs. We show an application of greyscale

granulometries to characterize DEMs through shape–size complexity measures

relative to symmetric rhombus, octagon and square templates. We first compute

pattern spectra that measure the size distributions of protrusions and intrusions

in a DEM. We then employ pattern spectra to compute probability size

distribution functions of protrusions and intrusions relative to three templates.

We finally compute shape–size complexity measures of DEM by employing these

probability functions. To illustrate the implementation of granulometric

approach to compute these measures of both background and foreground, we

consider an interferometrically generated DEM of a part of Cameron Highlands

of Malaysia. Hierarchical watersheds that could be decomposed from DEMs can

be better classified via these measures.

1. Introduction

Terrain roughness indicates several surficial processes and characteristics.

Characterization of such roughness for geological and geomorphologic research

hitherto can be done by several methods (e.g. Horton 1945, Stone and Dugundji

1965, Daniels et al. 1970, Franklin 1987, Ackeret 1990). Several earlier studies

characterized terrain or watersheds by analysing the spatial organization of the
unique channel and ridge connectivity networks that could be retrieved from digital

elevation models (DEMs), which are defined as functions representing spatially

distributed elevations in grey levels. Higher and lower category elevations represent

brighter and darker grey levels, respectively. Morphometry, fractal and allometric

scaling analyses of such networks provide various characteristics in a quantitative

manner (Horton 1945, Langbein 1947, Rodriguez-Iturbe and Rinaldo 1997,

Turcotte 1997, Sagar et al. 1998a, Maritan et al. 2002, Sagar and Tien 2004,

Sagar and Chockalingam 2004). Precise derivation of DEMs from remotely sensed
data has shown significant success in terrain characterization studies. The impor-

tance of DEMs in understanding geological and geomorphologic processes has since

been realized (e.g. Montgomery and Foufoula-Georgiou 1993, Rodriguez-Iturbe

and Rinaldo 1997, Whipple and Tucker 1999, Whipple et al. 1999, Snyder et al.
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2000, Dall et al. 2001, Rodriguez et al. 2002, Baratoux et al. 2002, Dadson et al.

2003). With the advent of powerful computers and high resolution remotely sensed

data capable of generating DEMs, it is now possible to characterize surficial features

by means of advanced mathematical concepts, one of which includes mathematical

morphology (Matheron 1975, Serra 1982). Applications of mathematical morpho-

logic concepts shown in the context of geomorphology include extraction of

significant geomorphologic features from digital elevation models (Sagar 2001a,

Sagar et al. 2000, 2003), estimation of basic measures of water bodies (Sagar et al.

1995a, b), modelling and simulation of geomorphic processes (Sagar et al. 1998b,

Sagar 2001b, 2005), generation of fractal landscapes (Sagar and Murthy 2000), and

fractal relationships among various parameters of geomorphologic interest (Sagar

1996, 1999, 2000, Sagar et al. 1998b, 1999, 2001, Sagar and Chockalingam 2004,

Sagar and Tien 2004). It is proposed in this paper to derive shape–size complexity

measures, such as average size and roughness from DEM.

A DEM provides a three-dimensional representation of earth terrain, vital in

geographical and remote sensing information. Global high quality and good

resolution DEMs can be generated using elevation data derived from contour maps,

digitized elevation maps, stereo models based on remote sensing images, and new

technologies such as radar interferometry (Zebker and Goldstein 1986), and laser

altimetry (Ritchie 1995). Recently high-resolution DEM data of the Earth on a near-

global scale have been produced by Shuttle Radar Topography Mission (SRTM)

(Farr and Kobrick 2000). DEMs in spatio-temporal mode are derived from remote

sensing data of various acquisition sources. Processing of such DEMs has offered

many approaches in terrain characterization. This enables new understanding in

earth surface processes.

The motivation for this study relies on addressing the following questions:

(a) What do bright and dark regions represent in a DEM?

(b) How do bright and dark regions of a DEM transform with multiscaling?

(c) How do granulometries characterize terrain?

(d) How do shape–size complexity measures of bright and dark regions

characterize a DEM?

This work is based on computations of area lost in DEMs across successive

resolutions. This lost information, which includes protrusions and intrusions of

various sizes, is computed as the area of the portion obtained from subtracting the

DEMs of successive resolutions. For this purpose, we generate multiscale DEMs via

multiscale openings and closings. Furthermore, the loss of information obtained

would be used to compute probability functions, based on which average size and

average roughness are estimated.

2. Study region, definitions and transformations

The study region is situated between the geographical co-ordinates of 4u319–4u349 N

and 101u169–101u199 E in a mountainous forest located in the east part of Perak in

Peninsular Malaysia. The geology of this region is granite rocks occupied by small

portions of metamorphic rocks, and alluvium covers most of the area. The DEM of

this region (figure 1(a)), encompassing an area of 6006600 pixels (one pixel is

10 m610 m), is represented by a function, f. Let f(x,y) be a function of Z2, and B be

a fixed element of size one (figure 1(b)). The erosion (dilation) of f by B replaces the
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value of f at a pixel (x, y) by the minima (maxima) of the values of f over a struc-

turing template B (B̂ is B rotated about 180u). In the present case, we consider B~B̂.

We represent these grey level morphological transformations as:

f7Bð Þ x, yð Þ~ min
i, jð Þ[B

f xzi, yzjð Þf g ð1Þ

f+Bð Þ x, yð Þ~ max
i, jð Þ[B

f x{i, y{jð Þf g, ð2Þ

where B is a discrete binary template (e.g. figure 1(b)), and fi and › denote symbols

for erosion and dilation. In other word, ( ffiB) and ( f›B) can be obtained by

computing minima and maxima over a moving template B, respectively. The grey

level opening and closing of f by B are the functions ( f#B)5[( ffiB)›B] and

( fNB)5[( f›B)fiB], where # and N denote symbols for opening and closing,

respectively.

Subsequently, multiscale opening and closing are performed by increasing the size

(scale) of the structuring template Bn, where n50, 1, 2,…, N. These multiscale

openings and closings of f by B are represented as (i) {[( ffiB)fiBfi…fiB]

›B›B›…›B}5[( ffiBn)›Bn]5( f#Bn) and (ii) {[( f›B)›B›…›B]fiBfi

Bfi…fiB}5[( f›Bn)fiBn]5( fNBn) at scale n50, 1, 2,…, N, respectively.

Performing opening and closing iteratively by increasing size of B transforms the

DEM into respective lower resolutions. Multiscale opening and closing of DEM by

Bn affect spatially distributed elevation regions in the form of smoothing of contours

to various degrees. The shape and size of B control the shape of smoothing and the

scale, respectively.

Figure 1. (a) DEM of a part of Cameron Highlands, Malaysia, and (b) disk-like structuring
templates in different connectivity grids.
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3. Granulometry of DEM via opening and closing

Local foreground and background in the DEM signify higher and lower local

elevations, respectively. Granulometries by opening and closing of DEM produce

DEMs at multiple scales, where various sizes of protrusions and intrusions from

foreground and background structures would be filtered out correspondingly. The

basic difference between performing opening and closing to generate DEMs at

multiple resolutions lies in the objective of computing roughness of foreground

(essentially due to local lower elevations) and background (essentially due to local

higher elevations). These multiscale DEMs provide basic information to compute

shape–size complexity measures.

We perform multiscale openings and closings on Cameron Highlands DEM by

means of symmetric rhombus, octagon and square templates, which are disks in 4-

and 8-connectivity square grids (figure 1(b)). An octagon of size 565 is the

Minkowski sum of a square and rhombus of size 363. Illustrations of specific

resultant multiscale DEMs at multiple scales can be seen in figure 2. We

observe large flat plateaus (figure 2(a)) and flat sinks (figure 2(b)) shaped like Bn

at large scales n of the opening ( f#Bn) and the closing ( fNBn), respectively.

The area of the multiscale opening DEMs, A fð Þ~
P

x, yð Þ
f x, yð Þ, decreases with increasing

opening cycle and A( f#B0)>A( f#B1)>A( f#B2)>…>A( f#Bn)5A( f#Bn + 1).

Similarly, the area of the multiscale closing DEMs increases with increasing closing

cycle, which is mathematically shown as A( fNB0)(A( fNB1)(A( fNB2)(…(

A( fNBn)5A( fNBn + 1).

We compute areas of protrusions and intrusions from Cameron Highlands DEM

that are filtered out at respective scales as a main parameter to estimate the shape–

size complexity measures by means of symmetric templates. Thus, we employ

pattern spectra (Maragos 1989) that map each size n to some measure of the higher

order of f relative to B as:

PSf zn, Bð Þ~A fpBnð Þ{ fpBnz1ð Þ½ �, 0ƒnƒN ð3Þ

PSf {n, Bð Þ~A f NBnð Þ{ f NBn{1ð Þ½ �, 1ƒnƒK , ð4Þ

where PSf( + n, B) and PSf(2n, B) are the pattern spectra of fore-

ground and background portions of f relative to B, and a(x)2b(x) is

the point-wise algebraic difference between the two functions a(x) and b(x). The

information that we compute by subtracting each opened version from the

preceding level of opened version are the protrusions of size smaller than the Bn

that could be filtered via corresponding level of opening (equation (3)). By

incorporating multiscale closings, we estimate the pattern spectrum of

negative size portions by taking into account the complexity of the local

background of f. We obtain intrusions by subtracting the closed version

from its succeeding level (equation (4)). The unions of these protrusions and

intrusions testify the presence of channels and ridges. In other words, we

compute the difference between the area after nth level opened DEM and the

area after (n + 1)th level opened DEM (where n ranges from 0 to N). This difference

is divided by the area of the original DEM, A( f ), to get the probability function at

nth level, ps(n, f ). This descriptive procedure is given with a mathematical
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(a)

(b)

Figure 2. Multiscale DEMs generated via granulometries by opening and closing at
different levels. The interval between the contiguous levels is considered to be 10 (the structure
element used is the octagon).
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abstraction as:

ps n, fð Þ~ A fpBnð Þ{A fpBnz1ð Þ
A fpB0ð Þ , n~0, 1, 2, . . . , N, ð5Þ

where 0(ps(n, f )(1. In other words, the probability function is the ratio between

the area of the region that is obtained from algebraic difference between contiguous

levels of opened DEM and the area of DEM. These filtered features of f with size Bn

are a sort of crenulation protruding above f. This further implies that the larger the

ps(n, f ), the more features with size Bk protrude above f. A ps(n, f ) value of 0

indicates that there are no features of size Bk. However, a value of 1 for ps(n, f )

indicates that there exists one only feature protruding above f, and its size is BN. We

also compute the difference between the area after nth level closed DEM and the

area after (n–1)th level closed DEM (where n ranges from 1 to N). This difference is

divided by A( f ) to get the probability function at nth level, ps(2n, f ). This is

mathematically expressed as:

ps {n, fð Þ~ A f NBnð Þ{A f NBn{1ð Þ
A f NBkð Þ , ð6Þ

where 0(ps(2n, f )(1. To compute the shape–size complexity measures of

background region in Cameron Highlands DEM, the probability function

(equation (6)) is computed as the ratio between the area of the region obtained

from algebraic difference between contiguous levels of closed DEM and the area of

DEM.

4. Shape–size complexity measures

Shape–size complexity measures include average size and roughness of a DEM. The

basic information needed to compute these two measures includes the areas

estimated from the granulometric analysis and the normalized probability functions

(figure 3). These scalar independent measures that rely on topological and

geometrical criteria can be considered as indicators, in order to understand the

complexity of surface due to size distributions of protrusions/intrusions. Therefore,

we compute ps(n, f ) and ps(2n, f ) for DEM in a normalized way. We estimate

average size, AS(f/B), and average roughness, H(f/B), of foreground by incorporat-

ing ps(n, f ) relative to B as:

AS f =Bð Þ~
XN

n~0

nps n, fð Þ ð7Þ

H f =Bð Þ~{
Xn

k~0

ps n, fð Þlog ps n, fð Þ: ð8Þ

To compute similar measures of the background of f, we consider ps(2n, f ) of

background portions of f, estimated according to equation (6). Average roughness

quantifies the shape–size complexity of f by means of its surface roughness, due to

the protrusion and intrusion distribution averaged over all depths that B reaches.

For instance, a triangular shape, while investigating through granulometries by

opening with triangular template, which is homothetic to triangle, yields a higher
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value for average size, and a lower value for roughness, than those of other non-

homothetic templates. To illustrate this point on a greyscale DEM, three templates

are used in this investigation.

We derive the indexes of AS( f/B) and H( f/B) (table 1) for the DEM with

granulometries by opening and closing using three disk-like templates. We compute

AS( f/B) from the probability functions estimated with granulometries by opening and

closing using rhombus, octagon and square, respectively, and obtain 73.40, 68.30 and

64.90 (opening), and 72.43, 67.26 and 63.33 (closing). Based on the granulometric

analysis of DEM through openings relative to rhombus, octagon and square, H( f/B) is

estimated for Cameron Highlands DEM as 6.99, 6.72 and 6.36, respectively. Similar

analysis via closing by means of the three templates yields H( f/B) values of 6.59, 6.15

Table 1. Shape–size complexity measures of a DEM.

Multiscale

AS( f/B) H( f/B)

Rhombus Octagon Square Rhombus Octagon Square

Opening 73.40 68.30 64.90 6.99 6.72 6.36
Closing 72.43 67.26 63.33 6.59 6.15 5.78

(a)

(b)

Figure 3. Graphical plot of size of structuring element and normalized probability functions
estimated from granulometries via (a) opening and (b) closing. Blue, red and green are,
respectively for rhombus, octagon and square.
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and 5.78, respectively. The higher the H( f/B), the higher is the maximal pattern Bn at

equal area portion in all sizes n that f contains. An H( f/B) value close to zero indicates

that f is the union of maximal patterns of one size.

As the AS( f/B) value estimated for f relative to B increases, so does the H( f/B)

value relative to the same B. This is obvious from table 1. As the highest H( f/B)

value estimated via opening (closing), i.e. 7 (6.6), is due to rhombus, the estimated

AS( f/B) value via opening (closing) relative to the rhombus is the largest among the

three values, i.e. 73.40 (72.43). We also observe that the smaller the number of

elements in a symmetric template, the higher are the average size and roughness

values, and vice versa. These measures relative to symmetric templates provide

overall characteristics of DEMs. Based on these measures, which are sensitive to

changes in the characteristic information of B, one can make a clear demarcation

between the terrains. From the characteristic information point of view, in general,

there is a clear distinction between symmetric and asymmetric templates. Such a

distinction leads to different results. However, we hypothesize that such a distinction

would be useful to understand direction- and location-specific shape–size complex-

ity measures within a watershed. Changes in characteristic information such as those

in terms of shape, size, origin and orientation can be employed to unravel

characteristic dependent shape–size content from the DEM. Application of other

choices of templates that can be used instead of disks to unravel the desired

topological properties of watersheds will be addressed in our future work.

5. Conclusions and scope

In this study, we perform granulometric analysis via opening and closing to filter the

protrusions and intrusions of both foreground and background that are

conspicuous in Cameron Highlands DEM. Two indexes to quantify shape–size

content in foreground and background portions of the DEM are computed.

Further, we hypothesize that the computed indexes correlate well with the

dimensions of channel and ridge networks that summarize connectivity, orientation,

and association of concave and convex regions of several orders in DEMs. Sub

watershed-wise granulometric analysis and estimation of these measures, which are

sensitive to surficial changes, would facilitate new insights into classifying

watersheds. With the advent of robust tools to derive relatively error-free DEMs

from multi-temporal (scale) remotely sensed data, linking surficial processes

involved in shaping the terrain with respect to these complexity measures is a

potentially valuable study that needs further investigation.
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