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Applications of mathematical morphology in surface water body
studies

B. S. DAYA SAGAR, G. GANDHI and B. S. PRAKASA RAG

Centre for Remote Sensing, Department of Geo-Engineering,
Andhra University, Visakhapatnam-530003, India

(Received 9 Novemher 1993; in final form 2 Nooember 1994)

Abstract. Some possible applications of mathematical morphological transfor
mations in computing the basic measures of surface water bodies are presented.
Sixteen water bodies are extracted from SPOT PLA data, and the algorithm
developed, based on mathematical morphological concepts, is tested to compute
their basic measures.

I. Introduction
In mathematical morphology, the concept of image functions in terms of basic

measures, area, perimeter, centroids, and directional diameters (Ellias and Weibel
1967, Meyer 1980, Giardina and Dougherty 1988). Kulpa (1977, 1983) used
algorithms based on arithmetics to compute basic measures. But the computation of
these basic measures of any shape by planimetric methods is tedious, time consum
ing and the results are only approximate. Also, the algorithms that depend upon real
arithmetics are plagued by the inadequacies resulting from the so-called finite length
register effects (Sinha and Giardina 1990). Davis (1986) opines that the trapezoid
approximation, a computational method for the determination of a centroid is not
simple. The investigations of Lantuejoul (1982), Meyer (1980), Chermant et al.
(1984) have proved the potentiality of mathematical morphology applications for
the determination of shape parameters in various disciplines.

Therefore, in the present investigation certain mathematical morphological
transformations erosion and hit or miss transformation (Serra 1982) and erosion
dependent grassfire transformation (GFT), are tested to compute the basic measures
of surface water bodies in discrete domain.

2. Mathematical morphological transformations
Mathematical morphology based on set theoretic concepts IS a particular

approach to the analysis of geometric properties of different structures. The main
objective is to understand the geometrical properties of a binary image of a natural
feature, consisting of water bodies, refer to as grain, and no-water body, refer to as
pore, by investigating its microstructures with various forms known as 'structuring
elements', following the concept of Serra (1982). In this binary format 'l's indicate
parts of the water body and 'O's show parts of no-water body. The shape of the
structuring element depends upon the orientation of grain or its parts. In the present
context an eight connected square grid is considered as a structuring element.

The geometrical properties of a binary image, possessing water bodies and no
water bodies, are subjected to the morphological functionals erosion, grassfire, and
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1496 B. S. Daya Sayar et al.

hit or miss transformations. A discrete binary image, M, is defined as a finite subset
of Euclidean two-dimensional space, R2

.

The following morphological operations are used for developing an algorithm to
compute basic measures.

Translation: Let D be a subimage of the Euclidean plane, R2
• The translation of the

image D by a point, x, in R 2 is denoted by D+x and defined as:

D+x={d+x: dED} (I)

Dilation: Let M and S be subimages of Euclidean plane, R2
• The dilation of an

image, M, with structuring element, S, is denoted by !2(M,S) and defined as:

!2(M,S) = MEBS= usesM +s= {x: (-S +x)nM #t/J} (2)

Erosion: Let M and S be subimages of Euclidean plane, R 2
. The erosion of an image,

M, with structuring element, S, is denoted by ~(M,S) and defined as:

~(M,S)= M8( -S)=nsesM +s= {x: S+x>;M} (3)

where -S={ -s: SES}, i.e., S rotated 1800 round the origin. Hereafter -S is
represented as S. Now ~(M,S)=M8S. Two consecutive erosions can be defined as
follows:

(4)

2.1. Boundary extraction
The boundary (figure 1(c) of any object, M, can be extracted by subtracting the

eroded object, ~(M,S), (figure 1 (b» from the original object (figure I (a». This can
be mathematically represented as,

Boundary =M -~(M,S)= {x: x E M and x <t ~(M,S)} (5)

2.2. Centroid determination
According to the grassfire transformation (GFT) of Meyer (1980) a fire starts

simultaneously at all points along the boundary of a grain, and propagates at
uniform speed towards the centroid of the grain. The centroid of any shape can be
identified, irrespective of its complexity, with a higher degree of precision, provided
the following conditions are satisfied (figure 2). Two shapes, simple with uniform
outline and complex with the corrugated outline, are considered to explain the
process of grassfire transformation to locate the centroid.

If an object of simple form, can be assumed to vanish at n consecutive erosions,
as shown in figure 2(b), its centroid can be identified at the (n-I)th erosion (figure

M Me 5 M-(MeS)

(a) (h) (e)

Figure 1. Morphological operations, (a) original image in binary format, (h) eroded set, and
(e) subtracted set from (h), boundary.
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Mathematical morphology in surface water bodies 1497

, .. - ... ,

r. \. ', ,-. ,......' D

(6)

Me(n-1)S MenS
(a) (b)

Figure 2, Grassfire transformation, (a) set after n -1 number of erosions, (b) set after n
number of erosions, empty set.

2 (a», The consecutive n erosions of an object, M, with the structuring element, S,
can be represented as follows:

M8nS =( .. .«(M8S)8S)8S) ... 8S)n times

M8(n-I)Si'¢: M8nS=¢

The single pixel remaining, after operation M8(n- I)S is considered as the centroid
of the shape (figure 2 (a».

For complex shapes, when more than one pixel remains; they have to be joined.
The resultant shape may be a straight line, a triangle, a square, a parallelogram or
any possible polygon which may be termed a 'secondary set' or 'secondary grain' or
'connex components' (figure 3 (a». The secondary sets have to be blocked in, and
grassfired once again.

While applying G FT, a complex shape (figure 3 (e)) may be separated into k
different connected components, C" C2 , .•. , C" after m(1 <m<n) consecutive
erosions (figure 3 (b)), where C; c:; M, 1:5. i 5; k (Definer 1972). Treating each connex
component as a set, the sets are grassfired again to determine the local centroids
(figure 3 (c]

Ci8nS=¢ and Ci8(n-l)Si'¢, where 1«i-ck (7)

C;8(n-I)S is the centroid of that set C, (figure 3 (c) which is a subset of M. The
polygon obtained by connecting local centroids, is filled as a solid block and termed
a tertiary set (figure 3 (d ». The tertiary set is grassfired, once more to find out the
actual centroid of the original shape (figure 3 (e».

2.3. Area computation
In step 3 the structuring element, S, of size I x I (i.e., a single image pixel) is

selected and convolved over the image. Whenever a structuring element fits (i.e.,

M

(a)

c,

M 8nS

(b)
C 8(n-l)S

(e)
A

(d)

A,8(n-l)S

(e)

Figure 3. Grassfire transformation on complex shapes, (a) original image in binary format
(111), (h) set after 111 number of erosions, three connected components (CI' C2' and C,)
can be identified, (e) set after n-1 number of erosions, three local centroids of three
connex components, (d) secondary set after adding local centroids, (e) secondary set
after n- t number of erosions,



D
ow

nl
oa

de
d 

B
y:

 [C
hi

ef
 L

ib
ra

ria
n]

 A
t: 

06
:5

5 
17

 N
ov

em
be

r 2
00

7 

1498 B. S. Daya Sayar et a!.

Figure 4. SPOT PLA digital data (512 x 512).

S,= M) within the image. it will be considered as a hit or a miss (i.e., S'= M).
Whenever the structuring element hits the microstructure of the set, it is counted as
an area element.

Area of the Set considered = Total Hits scored (8)

The algorithm thus developed has been tested successfully on water bodies
extracted from satellite digital data.

3. Case study
The mathematical morphological techniques were applied on surface water

bodies extracted from the digital data sets of small area (5 km x 5 km), acquired
through SPOT (PLA mode) digital data of December 1990 (figure 4), to compute
basic measures. The flowchart shows the sequence of procedures followed in this

Figure 5. The image after applying threshold values.
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Figure 6. The thresholded image after editing, showing water bodies and no-water body
region.

work. The water bodies were extracted using thresholding (figure 5) and image
editing techniques (figure 6). The boundaries of the water bodies were extracted by
subtracting the eroded water bodies from the original water bodies (figure 7). The
sample consisted of 16 water bodies each with a minimum area of 100m2 as SPOT
(PLA) digital data possess 10m x 10m resolution (figure 6).

3.1. Application of the developed algorithm
A program was developed for the algorithm discussed in the previous sections to

compute certain basic measures of the water bodies (figure 9). The area and
perimeter of all the water bodies were computed by applying a hit or miss
transformation (H MT), and the centroids of all water bodies were determined by
applying a grassfire transformation (GFT). Based on the centroids identified for

Figure 7. The boundaries of surface water bodies.
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1500 B. S. Daya Sagar et al.

!Basic measures of each water bodvl

Figure 8. Flowchart shows procedures followed in this work.

every water body, the longest axis, width, together with the radii of the largest
inscribed and the smallest inscribed circle were computed.

The basic measures of sixteen water bodies, extracted from these satellite digital
data, and their dimensionless ratios arc presented in tables I and 2. The dimension
less properties were computed by using the formulae of Folk and Rayner (see Davis
1986, page 342). The centroid, being an important parameter in many aspects, is
determined through successive erosions. The proposed method is better than several
existing methods. From the centroid the distances can be measured to every pixel on
the boundary, in 3600 rotation, to represent the water body, which is in closed form,
into a single Fourier line. Thus outline forms of the water body can be characterized
in the Fourier domain. The computation of perimeters and area are also of use to
compute the shape ratios. The relations among these primary measures can also be
shown.

4. Conclusions
The mathematical morphological transformations are useful for the computation

of basic measures of any type of surface water body, and avoid the constraints of

Figure 9. The image after applying mathematical morphological transformations.
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Mathematical morpholoqy in surface water bodies 1501

Table I. Basic measures of sixteen water bodies.
(All the units are in pixels.)

Water body Inner Outer
number Perimeter Area radius radius Length Width

I 188 1629 4 34 54 45
2 131 1103 8 29 42 40
3 \52 1364 6 25 47 23
4 62 393 7 18 19 15
5 161 1572 8 24 39 34
6 476 8532 23 78 134 90
7 141 1400 5 20 37 33
8 181 2341 2 28 45 39
9 164 1458 10 29 57 28

10 138 1335 3 23 37 32
II 82 586 3 t2 21 19
12 99 825 7 16 26 24
\3 178 1556 6 30 57 24
14 \99 t251 5 22 37 36
15 204 1654 5 31 47 45
16 180 1293 7 29 48 36

manual methods. Hydrologists may prefer to adopt these mathematical morphologi
cal concepts to compute basic measures, rather than the use of algorithms that rely
on real arithmatics.

The primary measures are used to study irrigation tanks in a temporal domain.
The areal extent can be computed, facilitating hydrologists to cary out temporal
analysis at a faster rate. In particular, temporal changes in binary images can be
studied. A binary image, consisting of a number of water bodies, can be subtracted

Table 2. Dimensionless parameters of sixteen water bodies.

Water body Circularity Elongation Form Compactness Thinness
number ratio ratio ratio coefficient ratio

\ 0·18 0·83 0·56 1·73 0·58
2 0·24 0·95 0·63 1·24 0·81
3 0·24 0049 0·62 1·35 0·74
4 0041 0·79 1·09 0·78 1·29
5 0·24 0·87 1·03 1·3\ 0·76
6 0·15 0·67 0·48 2·11 0047
7 0·28 0·89 1·02 1·11 0·89
8 0·29 0·86 \·16 1047 0·90
9 0·22 0049 0045 \·1\ 0·68

10 0·28 0·86 0·98 1047 0·88
II 0·35 0·90 1·33 1·14 1·10
12 0·34 0·92 \·22 0·91 \·06
13 0·20 0042 0048 0·95 0·62
14 0·\3 0·97 0·92 1·62 0·32
15 0·\6 0·95 0·75 2·00 0·50
\6 0·16 0·75 0·56 1·99 0·50
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1502 Mathentatical morpholoqy ill surface water bodies

from the same image of another season. This aids analysis of directions and changes
in the areal extent of the water bodies. These primary measures can be used to
compute various shape ratios (dimensionless properties) empirically. These studies
can bc extended to any unit of spatial shape. This computationally simple algorithm
also works well on complicated shapes.
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