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Do Skeletal Networks Derived from
Water Bodies Follow Horton’s Laws?1

B. S. Daya Sagar,2 M. Venu,2 and K. S. R. Murthy2

The aim of this short note is to test whether the morphological skeletal network (MSN) of water
bodies that resembles a river network follows Horton’s laws. A fractal relationship of MSN of a
water body is also shown. This investigation shows that the MSN of the Nizamsagar reservoir follows
Horton’s laws. Furthermore, this reservoir has a fractal dimension (Dm) of 1.92 which was computed
by using two morphometric quantities and the fractal dimension of the main skeletal length (d).
This value tallies exactly with the fractal dimension (Df ) of the whole MSN computed through
box-counting method.
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INTRODUCTION

Morphological skeleton network (MSN) which is a one pixel wide caricature
that summarizes overall shape, size, orientation, and connectivity of a feature
(e.g., lakes, river basin outlines), is an example of a fractal tree (Sagar, 1996).
The structural or topological similarities between the MSN of a water body and
natural river network induced the authors for this study. These similarities lead
to verify the Horton’s laws (Horton, 1945) on MSN, and also to show a fractal
relationship of MSN. The organisation of this letter is as follows. In what fol-
lows in this short note is a brief introduction to certain mathematical morpho-
logical transformations that are needed to extract the morphological skeleton of
an object, description to Horton’s laws of number and length of streams, frac-
tal nature of the structure of the water body, and a sample study to verify the
Horton’s laws of river networks with the MSN of a water body.

1Received 24 July 1997; accepted 18 May 1998.
2Centre for Remote Sensing & Information Systems, Department of Geoengineering, Andhra Uni-
versity, Visakhapatnam-530 003, India.
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MATHEMATICAL MORPHOLOGY

Mathematical morphology (Serra, 1982) based on set theoretic concepts is
one of the approaches to the analysis of geometric properties of different struc-
tures. A discrete binary image A is defined as a finite subset of Euclidean two-
dimensional space, Z 2. The geometrical properties of a binary image possessing
set (A) and set complement (Ac) are subjected to the morphological functions.
The morphological operators can be visualised as working with two images.
The image being processed is referred to as the binary image A, and the other
image being a structuring template, B. Each structuring template possesses a
designed shape that can be thought of as a probe of A. In addition, many struc-
turing templates are represented by a compact subset of Euclidean space, so that
constraints which correspond to the four principles of the theory of mathematical
morphology such as invariance under translation, compatibility with change of
scale, local knowledge, and upper-semicontinuity will be imposed on morpho-
logical set transformations such as erosion, dilation, opening, and closing for
precise extraction of topological information. The transformations involved in
MSN extraction are erosion to shrink, dilation to expand, and cascade of erosion-
dilation to smoothen the set. These transformations are based on Minkowski set
addition and subtraction (Serra, 1982).

Dilation

Dilation combines two sets using vector addition of set elements. If A and B
are sets in Euclidean space with elements a and b, respectively, a c (a1, . . . , aN)
and b c (b1, . . . , bN) being N-tuples of element coordinates, then the dilation of
A by B is the set of all possible vector sums of pairs of elements, one coming
from A and the other from B. The dilation of A with structuring template, B, is
defined as the set of all points “a” such that Ba intersects A. It is expressed as

A ⊕ B c {a : Ba
U

A /c ∅} c Ub ∈ BAb (1)

Erosion

The erosion of A with structuring template, B, is defined as the set of points
“a” such that the translated Ba is contained in A. It is expressed as

A 4 B c {a : Ba ⊆ A} c
U

b ∈ BAb (2)

where B c {b : b ∈ B}, i.e., B rotated 1808 around the origin. It is important
to mention here that Minkowski addition and subtraction are akin to the mor-
phological dilation and erosion respectively as long as the structuring template
(B) is of symmetric type (Maragos and Schafer, 1986). The mathematical rep-
resentation of the decomposition of the structuring template of size Bn (where
n c 0, 1, 2, . . . , N) into smaller structuring templates can be shown as
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Bn c B ⊕ B ⊕ B ⊕ . . . ⊕ B (3)

According to Equation (3), two consecutive erosions and dilations can be, respec-
tively, represented as (A 4 B) 4 B c A 4 B2, and (A ⊕ B) ⊕ B c A ⊕ B2. The
dilation followed by erosion and the erosion followed by dilation are termed
as closing and opening transformations, respectively. These cascade transforma-
tions are idempotent (Serra, 1982). However, these transformations can be per-
formed according to the multiscale approach (Maragos and Schafer, 1986). In
the multiscale approach, the size of the structuring template is increased from
iteration to iteration.

EXTRACTION OF MORPHOLOGICAL SKELETON NETWORK

A morphological skeleton network is defined as a line thinned caricature to
summarize the shape, size, orientation, and connectivity of the object (Lantue-
joul, 1980). The object refers to water body in the present context. MSN is
defined according to (5) as the union of maximum possible angular points that
could be isolated from all possible successive front lines of the water body that
is represented in binary form. The possible skeletal network from the image (A),
MSN(A), viewed as subsets of Z 2 can be defined mathematically as

MSNn(A) c (A 4 Bn)/ {[(A 4 Bn) 4 B] ⊕ B} n c 0, 1, 2, . . . , N (4)

MSN(A) c UN
n c 0MSNn(A) (5)

where MSNn(A) denotes the nth skeletal subset of the image (A). In the above
expression, subtracting from the eroded versions of A their opening by B retains
only the angular points, which are points of the skeletal network. The union of
all such possible points produces a skeletal network MSN(A) of image A. The
subscript, n ranges between 0 and N, and is the size of the structuring template.
In Equation (4), opening of an eroded set is always by means of a structuring
template of an arbitrary size.

HORTONIAN LAWS OF RIVER NETWORKS

On the basis of the intuitive arguments it is hypothesised that the morpho-
logical skeleton network extracted from a water body with respect to fractal
structure follows certain laws of river morphometry (Sagar, 1996), proposed by
Horton (1945) and Schumm (1956). To test this hypothesis, it is imperative here
to describe Horton’s (1945) laws of river networks.

In the geomorphological analysis of river networks, scaling properties
are defined by Horton’s laws (Smart, 1972). These laws are supplemented by
Strahler’s (1964) ordering (e.g., Shreve, 1967; Smart, 1972) to yield stream bifur-
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cation number and stream length laws. These laws of channel network compo-
sition are an integral part of Strahler’s (1957) ordering technique. A system of
ordering that recognizes the existence of hierarchy among the separate segments
is therefore assumed to represent the structure of channel networks. This postu-
lates that source channels are of order 1, and when two channels of order i and
j, respectively, merge, a channel of order q is formed as

q c max{i, j, Int[1 + (1/ 2)(i + j)]} (6)

where function Int [ ] denotes the integer part of the argument.
According to Equation (6), when two channels of equal order join, a stream

of one order higher is formed; and when two streams of different order join, the
continuing channel retains the order of the higher-order channel.

Horton’s laws of stream numbers, and stream length propose that the bifur-
cation ratio (RB) and the stream length ratio (RL) are constant over homogeneous
river basins at increasing resolution (Horton, 1945). These ratios can be com-
puted as follows: Bifurcation ratio (RB) is the ratio of number of stream segments
of a given order N(q − 1, Q ) to the number of streams of the next higher order,
N(q , Q )

RB c
N(q − 1, Q )

N(q, Q )
q c 2, . . . , Q (7)

Stream length ratio (RL) is the ratio of mean length of segments of order
q , L(q , Q ) and mean length of segments of the next lower order, L(q − 1, Q )

RL c
L(q, Q )

L(q − 1, Q )
q c 2, . . . , Q (8)

where N(q , Q ) is the number of streams in order q in a basin of order Q ,
(N(Q , Q ) c 1); L(q , Q ) is the average length of streams of order q; RB and
RL can also be obtained from the slopes of the straight lines resulting from plots
of logarithmically transformed values of N(q , Q ) and L(q, Q ) vs. order q, for
q ranging from 1 to Q . Channel network density: The channel density Cd can
be calculated by

Cd c L(Q )/ A(Q ) (9)

where A(Q ) and L(Q ) are the finite measures of the basin area and the length
of total channel network (i.e., scale dependent). Channel frequency: Channel
frequency, Cf , can be calculated by

Cf c

Q

∑
q c 1

N(q, Q )/ A(Q ) (10)
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MELTON’S LAW

Melton’s law (Smart, 1972) relates the channel frequency (10) to the square
of channel density (9).

Q

∑
q c 1

N(q, Q )/ A(Q )

[L(Q )/ A(Q )]2
c

Cf

C 2
d

∼c 0.69 (11)

The ratio of these two quantities has a value of about 0.69. There are two pro-
posed methods to test whether a model is Hortonian or non-Hortonian. The for-
mer is based on Melton’s law and the later is to examine the channel density
across scales. In a non-Hortonian system, the channel density does not vary with
scale; in a Horton system it does (Beer and Borgas, 1993). Melton’s law (Smart,
1972) may be computed to test how closely a Hortonian stream network obeys
Melton’s law. These laws proposed in the context of channel network are used
to study MSN of a water body.

DO SKELETAL NETWORKS OF WATER
BODIES FOLLOW HORTON’S LAWS?

What follows in this section is a brief description on the structure of the
water body and its morphological skeletal network and the fractal nature of water
body outlines. A sample study on the Nizamsagar reservoir is shown to test the
Horton’s laws and a fractal relationship proposed in the context of river net-
works.

Structure of Morphological Skeleton Network of Water Bodies

Any planar feature can be transformed as its morphological skeleton. As
a river network is assumed as the morphological skeleton of a basin, the MSN
of water bodies is assumed as fluid flow attracting points. As in a river basin
where the pattern of stream branches is determined by inequalities in the out-
line of the basin, the morphological skeleton network also will be determined by
the inequalities in the outline of the water body. These inequalities are caused
by several conditions such as climatic, environmental, physiographic, geologi-
cal etc. These wrinkles can be treated as the source paths of skeletal branches.
The complexity of morphological skeleton depends upon the degree of contor-
tions in the basin outline. In a similar way, a complex morphological skeleton
network will be produced due to inequalities in the outline of the water body.
The number of branching orders depends upon the overall structure and textural
details of the water body. The higher the textural information the more is the
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number of lower order skeletal segments. Hence, to characterize a water body,
both structural and textural aspects must be studied. Depending upon the over-
all structural composition of a water body, the skeletal branches of lower order
bifurcate and skeletal branches of next higher order are formed. This implies
that the number of wrinkles in the boundary of the water body is equal to the
number of first-order skeletal branches. The two first orders join to form second
order and so on, as in the case of river networks.

Fractal Nature of Water Body Outline

While characterizing and quantifying surface water bodies, variations in
their number and shape naturally occur because of the different scales used.
These variations in number and shape of water bodies from scale to scale lead to
many ambiguities. Thus, scale can have profound implication on the quantifica-
tion of water bodies. At lower resolutions, the boundary of surface water bodies
simulates a smooth curve. Thus water bodies also exhibit fractal characteristics
and statistical self-similarity according to the concept of Mandelbrot (1982). The
outline of surface water bodies also exhibits convolutions with increasing mag-
nification. At higher resolutions, the smaller edge effects are apparent in the
boundaries. Hence, with increasing resolution the order of the morphological
skeleton network, determined by inequalities in the outline, will be increased as
in the case of river networks. However, the skeletal density changes with change
in resolution. Such a change in river networks enables the river network to be
Hortonian. Because both water body outline and the corresponding MSN pos-
sess statistical self-similarity, they are fractals. Hence, an established method to
compute fractal dimension using morphometric order ratios (Tarbotan, Bras, and
Rodriguez-Iturbe, 1990) is adopted in the sample study to arrive at the fractal
dimension for the MSN of the Nizamsagar reservoir.

A SAMPLE STUDY AND CONCLUSIONS

To test whether the water body follows Horton’s laws an image of the
Nizamsagar reservoir situated in Andhra Pradesh, India, acquired on 13-04-1989
from IRS 1A, LISS 1 sensor with a resolution of 72 m (Fig. 1) is considered. The
MSN (Fig. 2) is extracted according to the procedures detailed in Eqs. (4) and (5).
Strahler’s (1964) order designation is given to the morphological skeleton net-
work thus extracted. At this resolution of the image, the network possesses four
orders. Hence, it is termed as fourth order skeletal network (Q c 4). The basic
measures such as order-wise lengths, total length, and main length of skeletal
network are computed (Table 1). The morphometric order ratios are computed
by following Eqs. (7) and (8). Table 1 shows these results.
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Figure 1. The extracted Nizamsagar reservoir
from IRS 1A LISS 1, 72 m resolution.

Figure 2. The morphological skeleton network of
the Nizamsagar reservoir.
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Table 1. Basic Measures of Morphological Skeleton Network, Certain Morphometric Order Ratios,
and Dissection Properties

No. of skeletal Length of skeletal
orders orders in pixel units

1 2 3 4 1 2 3 4 RL RB Cd Cf Cf / C 2
d Dm Df

28 7 2 1 356 96 76 200 2.16 3.33 0.06 0.0025 0.62 1.91 1.92
2

Figure 3A and B show a linear relationship between order of the skeletal
branches with logarithms of number of skeletal segments and mean lengths of
skeletal branches of each order. It is deduced that from the statistical relations
shown in Figure 3A and B, the MSN of the Nizamsagar reservoir follows Hor-
ton’s laws of river networks. It is tested whether the skeletal density (ratio of the
length of skeletal segments and the area of the water body) varies with increas-
ing resolution of the image. The other way to test the Hortonity of the network
is to verify Melton’s law (11), which is 0.62 for the MSN of the Nizamsagar
reservoir, close to 0.69 in the context of river networks. This shows that the
skeleton network of this water body is Hortonian. It is also observed that this
MSN follows a fractal relationship proposed in the context of river morphom-
etry. The morphological skeleton network of the Nizamsagar reservoir follows
Horton’s laws as evidenced by the results. The fractal dimension (Dm) is com-
puted through Equation (12) proposed by Tarbotan, Bras, and Rodriguez-Iturbe
(1990) in the context of river networks. The fractal dimension of such a frac-
tal tree can be computed by the following standard ordering quantities initially
proposed in the context of river morphometry. These include bifurcation ratio,
length ratio, and the fractal dimension of the main skeletal length (d ) of the MSN
of the Nizamsagar reservoir to compute the fractal dimension (Dm).

Dm c d
log(RB)
log(RL)

(12)

In Equation (12), the fractal dimension of the main skeletal length of the water
body (d ) computed by box counting method (Feder, 1988) is 1.21, and RB, and
RL are the bifurcation and length ratios of MSN. The fractal dimension (Dm)
computed for the MSN of Nizamsagar reservoir through Equation (12) is 1.912.
This value tallies with the fractal dimension (Df ) of the MSN computed by box
counting method, i.e., 1.92. The fractal plot to compute fractal dimension (Df )
through box-counting method is shown in Figure 4.

It is inferred that the morphological skeleton of the Nizamsagar reservoir
follows Horton’s laws and also the fractal relation proposed in the context of
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Figure 3. Statistical results of morphological skeleton
network of Nizamsagar reservoir. A, The log of the num-
ber of skeletal segments of a given order plotted against
that order. B, The log of the average length of skele-
tal segments of a given order plotted against that order.
Horton’s laws state that a natural river network yields a
linear relation on each graph.
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Figure 4. A fractal plot between log no. of boxes on one
side and log number of boxes through which the skeleton
network traverses.

river network. The fractal dimension (Dm) tallies with the fractal dimension (Df )
of the MSN of the Nizamsagar reservoir. This similarity supports that the MSN
of Nizamsagar reservoir follows Horton’s laws.
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APPENDIX. LIST OF SYMBOLS AND NOTATIONS

Z 2, Two-dimensional grid of discrete space
A, B, M, . . . , Subsets of Z 2

∅, Empty set
a, b, m, . . . , Elements of vector points Z 2, i.e., a point in the 2-D space

a ∈ A, Element “a” belongs to A
a /∈ A, Element “a” does not belong to A

⊂, ⊆,
U

, U, Subset, improper subset, intersection, and union
A 4 B, Minkowski subtraction
A ⊕ B, Minkowski addition
A 4 B̂, Erosion of A by B
A ⊕ B̂, Dilation of A by B

M/ A, Set difference between M and A
Ac, Complement of A with respect to Z 2

Ab, Translate of “a” by vector b, i.e. {a : a − b ∈ A}U
b ∈ BAb, Intersection of all the translates of Ab, with b ∈ B

Ub ∈ BAb, Union of all the translates Ab, with b ∈ B
Q , Order of the channel network in the basin

N(q , Q ), Number of channel segments of order q within a network of
order Q

L(q , Q ), Channel length of order q within a network of order Q

N(Q ), Total number of channels within a network of order Q

L(q , Q )/ N(q , Q ), Mean length of channel segments of order q

L(Q ), Total length of the channel network in the basin of order Q
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Df , Fractal dimension computed through box-counting method
Dm, Fractal dimension computed through morphometric order

ratios
d, Fractal dimension of main skeletal length computed through

box-counting method.


