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Detection of Spatially Significant Zones
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Abstract—The ability to derive spatially significant zones (e.g.,
water bodies and zones of influence) within a cluster of zones
has interesting applications in understanding commonly sharing
physical mechanisms. Using a morphological dilation distance
technique, we introduce geometric-based criteria that serve as
indicator of the spatial significance of zones within a cluster of
zones. This letter focuses on the problem of identifying zones that
are “strategic” in the sense that they are the most central or im-
portant based on their proximity to other zones. We have applied
this technique to a task aiming at detecting a spatially significant
water body from a cluster of water bodies retrieved from Indian
Remote Sensing Satellite Linear Imaging Self-scanning Sensor
(IRS LISS-III) multispectral satellite data.

Index Terms—Dilation distance, geographic visualization,
mathematical morphology, pattern classification, zones.

I. INTRODUCTION

H IGH-RESOLUTION remotely sensed satellite data and
digital elevation models (DEMs) are of immense use to

map spatial entities such as water bodies [1], zones of influence
[2], [3], geomorphologic basins [4], [5], and urban features
[6]–[14] that could be represented as areal objects on specific
thematic maps. Understanding the spatial organization of such
spatial entities (zones) by involving distances between all the
zones of a cluster of zones is important from the point of spatial
reasoning. Derivation of the spatial significance of each zone
within a cluster of zones is important to decide a suitable facility
(e.g., reservoir). We define a spatially significant zone as “a
zone from which it is easy to reach all of its neighboring zones.”
A spatially significant zone should necessarily be at a strategic
location and possessing a relatively larger size. A geomorpho-
logic basin (cluster of subbasins) consists of subbasins (zones),
and subbasins consist of still minor subbasins, and so on. The
main geomorphologic basin that consists of subbasins is treated
as a spatial system (see Fig. 1) and subbasins being subsystems.
We use the terms “sets,” “zones,” “watersheds,” “basins,” and
“areal objects” interchangeably in this letter.
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Fig. 1. Spatial system with ten zones represented over a 2-D Euclidean space.
If Ai (e.g., A1) is an origin zone, then all other zones, i.e., Aj (e.g., A2–A10),
are treated as destination zones. Then, computing the degree of the spatial
significance of Ai is subjected in this letter.

A spatially significant zone within a cluster of zones pos-
sesses a geometric characteristic, that is, greater proximity to
other zones highlighting significance of location. Identifying
the spatial significance of a zone from a geometric point of
view based on qualitative spatial reasoning is nontrivial, when
a spatial system includes a large number of zones, and such an
identification process varies from person to person according to
their own individual spatial perceptions. Recognizing spatially
significant zones within such a spatial system composed of
various zones could be quantitatively accomplished. In order to
do so, one needs to define an appropriate measure of the spatial
significance of a zone. Our concept of the spatial significance
of a zone stresses on the property of a zone being central with
respect to distance spatial relationship with other zones in the
cluster. We maintain that, in a cluster of adjacent, nonempty
compact, and nonoverlapping zones, it is possible to compare
spatial significance on the basis of dilation distances. This
includes the degree of proximity to other sets with minimum
expenditure of energy.

The organization of this letter that attempts to provide geo-
metric criteria to identify spatially significant zones within a
cluster of zones is as follows: Section II provides modeling
concepts, rationale, and methodology. Section III describes
the application of the technique, whereas Section IV provides
concluding observations and remarks.

II. METHODOLOGY

The goal of this section is to provide an equation based on
dilation distances among zones of a cluster to automatically
compute the spatial significance index (SSI) for each zone of a
cluster of zones. A spatial region is a connected homogeneous
2-D cell. Its formal definition is based on point-set topology
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with open and closed sets. Zones referred to in this letter are
defined as subsets of a metric space such as a Euclidean space.

A. Morphological Dilation

Binary dilation is a fundamental morphological operation
[15] that can be performed on any set (or map in a binary form)
on a 2-D Euclidean space. We explain this transformation and
its multiscale versions. The Boolean OR transformation of set
A by set B is also called the dilation of A by B. The following
operation in (1) dilates input image objects:

A⊕B = {a : Ba ∩A �= ∅} =
⋃
b∈B

Ab (1)

where ⊕ is a symbol for the morphologic dilation, Ab = {a+
b : a ∈ A} is the translation of A along vector b, and B̂ = {a :
−a ∈ B} is the symmetric of B with respect to the origin. The
reader is requested to refer to [15] for a more detailed exposition
of this fundamental transformation together with its algebraic
properties. We shall hereafter denote the dilation of A by B
by (A⊕B). Multiscale dilation can be performed by varying
the size of structuring element nB, where n = 0, 1, 2, . . . , N .
Dilation can be also iteratively performed as follows:

(A⊕ nB) = (A⊕B)⊕B ⊕ · · · ⊕B. (2)

B. Spatial System and Its Subsystems

Let a cluster of zones, i.e., A, be composed of a
number of nonempty compact sets (zones) denoted by
A1, A2, A3, . . . , AN such that A =

⋃N
i=1 Ai. These sets are

like possible partitions of an image. A better analogy is that
a DEM is an image, and possible partitions of a DEM are
subbasins (zones). For any pair of zones, i.e., Ai and Aj ,
from this cluster, such that i �= j, the following spatial rela-
tions hold true: 1) Ai ∩ (

⋃N
j=1
j �=i

Aj) = ∅, and 2) (Ai ⊕B) ∩
(
⋃N

j=1
j �=i

Aj) = (((
⋃N

j=1
j �=i

Aj)⊕B) ∩Ai) �= ∅.

For instance, for the cases of water bodies, nodes, and
point-specific data (noncontiguous form), relation (1) would be
satisfied. In many cases, where the zones are in noncontiguous
form, relation (2) may not be satisfied. Relation (2) would
be satisfied if all the zones of a cluster are in a contiguous
form (e.g., zones of influence of water bodies). In this letter,
we consider both cases that respectively satisfy relations (1)
and (2).

C. Dilation Distances Between Origin and Destination Zones

Determining distances between spatial objects (zones) based
on Euclidean metric is a challenge. If all the zones in a cluster
considered are identical such that the shapes and sizes of zones
are similar, then the simple Euclidean distances between all
the possible pairs of centroids of such zones would suffice to
detect the spatially significant centroid corresponding to a zone.
Euclidean distance of centroids of zones possessing dissimilar
shapes and sizes would lead to a problem in detecting the
precise spatially significant zone due to the following reasons:
1) Computation of centroids of zones requires an additional step

Fig. 2. (a) Two homothetic adjacent sets Ai and Aj of different sizes.
(b) Dilation distances d(Aij) = 11 and d(Aji) = 7 and, in turn, ρ(Aij) = 7.
(c) Two geometrically similar homothetic adjacent sets Ai and Aj of similar
sizes. (d) Dilation distances d(Aij) = 10 and d(Aji) = 10 and, in turn,
ρ(Aij) = 10.

perhaps based on a “minimal skeletal point” that is computa-
tionally expensive, and 2) the Euclidean distance between the
centroids of the two zones does not explain the morphological
(geometric) properties of the zones under consideration. How-
ever, the iterative dilation is a better choice to compute distances
between zones. Dilation distance is employed to address the
topic of identifying the spatially significant zone(s) from a
cluster of zones of varied shapes and sizes.

Let nonempty disjoint compact zones Ai and Aj be the origin
and destination zones, respectively. Ai is smaller than Aj [see
Fig. 2(a)]. The dilation distance from Ai to Aj [see Fig. 2(b)]
is represented by

d(Aij) = min
i�=j

(n : Aj ⊆ (Ai ⊕ nB)) . (3)

Similarly, the dilation distance from Aj to Ai is repre-
sented by

d(Aji) = min
i�=j

(n : Ai ⊆ (Aj ⊕ nB)) . (4)

We may state the following: d(Aii) = 0, d(Aij) �= d(Aji),
and d(Aij) = d(Aji) if both Ai and Aj possess identical size,
shape, and orientation [see Fig. 2(c) and (d)]. From (3) and
(4), it is evident that a smaller object, to completely occupy
a relatively larger one, requires a greater number of dilation
cycles than in the converse scenario [see Fig. 2(a) and (b)].
If there exists a shape–size dissimilarity between the two sets,
one can observe that d(Aij) �= d(Aji), and the minimum of
d(Aij) and d(Aji) is the Hausdorff dilation distance in (5) [16],
[17], i.e.,

ρ(Aij) = min (d : d(Aij), d(Aji)) . (5)

Estimation of the dilation distance between the origin and
destination zones is justified, as such a dilation distance is es-
sential to compute distances between the zones. The limitation
of this distance is that it is essentially affected by the object’s
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boundary points that are farthest out with respect to other spatial
objects.

The maximum distance dmax between an origin zone Ai and
destination zones Aj of a cluster is computed as

dmax(Aij) = max∀j (min (n : (Aj ⊆ (Ai ⊕ nB))))

= min

⎧⎪⎨
⎪⎩
n :

⎛
⎜⎝

N⋃
j=1
j �=i

Aj

⎞
⎟⎠ ⊆ (Ai ⊕ nB)

⎫⎪⎬
⎪⎭

. (6)

Similarly, dmax between the destination zones and an origin
zone is computed as

dmax(Aji) = max∀j (min (n : (Ai ⊆ (Aj ⊕ nB)))) . (7)

The maximum over all the distances between Ai and Aj in
(6) and (7) explains how many minimum dilation cycles are
required to cover the union of all Ajs.

D. SSI of a Zone

A zone Ai is designated as spatially most significant to
establish a facility if it is located in a place closer to all Ajs and
reaching Ai from all Ajs required a shorter distance (minimum
energy expenditure involved). No other zone from a cluster of
Ajs matches with Ai with respect to these two characteristic
(spatial) relationships, and hence, Ai is chosen as the best zone
and is termed as the most spatially important zone. Keeping
these characteristics in view, we propose (8) involving dilation
distances between origin zone Ai and destination zones Aj .
Thus

SSI = min∀i (dmax(Aij)) . (8)

The minimum of all the maximum values of the correspond-
ing origin zones would explain about the zone from which it
is easier to reach out all other zones with minimum energy
expenditure (dilation distance). The SSI of zone Ai is a di-
mensionless unit. The lower the SSI of zone Ai in a cluster of
zones, the higher is its significance. Equation (9) that computes
the normalized spatial significance index (NSSI) that ranges
between 0 and 1 takes the form

NSSI =

⎛
⎝

min
∀i

(dmax(Aij))

max
∀i

(dmax(Aij))

⎞
⎠ . (9)

A low value of the SSI or the NSSI enables the location
significance/importance of zone Ai from which every other
zone could be reached, or zone Ai could be reached from
every other zone with minimum expenditure of energy. If the
zones of a cluster are not similar in shape and/or size, then
min∀i(dmax(Aij)) and min∀j(dmax(Aji)) are not equal. They
are equal if the shapes and sizes of zones of a cluster are identi-
cal to each other. When all zones in a cluster are similar both in
terms of size and shape, the following relationship holds good:

⎛
⎝

min
∀i

(dmax(Aij))

max
∀i

(dmax(Aij))

⎞
⎠ =

⎛
⎝

min
∀j

(dmax(Aji))

max
∀j

(dmax(Aji))

⎞
⎠ . (10)

Fig. 3. (a) Synthetic example consisting of three spatial objects. (b) Dilation
distances between every possible pair are shown in a matrix form in addition to
the values obtained according to (6) and (7).

Fig. 4. (a) Indian Remote Sensing satellite (IRS LISS-III) multispectral image
of the study area. The blue objects are water bodies traced from the IRS LISS-
III image with the topographic map reference superposed on the IRS LISS-III
image, and white dots indicate the boundary of the considered cluster. (b) Small
water bodies. (c) Zones of influence of corresponding water bodies. (d) Water
bodies and zones of influence with labeling.

This relationship also holds good for cases where centroids
of zones are considered. The synthetic example that follows
may be referred for more details.

E. Synthetic Example

For clarity, a synthetic example is given to explain (6)–(10).
Let A1, A2, and A3 be three spatial objects in a cluster [see
Fig. 3(a)]. The assumed distances between all possible pairs
of these three spatial objects are shown in Fig. 3(b). A corre-
sponding matrix is shown in Fig. 3(b) from which dmax(Aij),
dmax(Aji), the SSI, the NSSI, and the homogeneity degree of
spatial objects explained in (6)–(10) could be easily understood.

As per the SSI and the NSSI (i.e., 6 and 0.857) computed
according to (8) and (9), respectively, where the considered
data include assumed dilation distances [see Fig. 3(b)], A2 is
designated as the spatially significant zone.

III. EXPERIMENTAL RESULTS

A. Cluster of Zones of Water Body Influence

Small water bodies and their zones of influence of varied
sizes and shapes heterogeneously arranged [see Fig. 4(a)–(d)]
are good examples of spatial systems. The data, which are
sourced from IRS LISS-III multispectral data of 23.5 mts
spatial resolution [see Fig. 4(a)] and a topographic map of
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Fig. 5. (a) Max(d(Aij)) for all is. (b) Max(d(Zij)).

TABLE I
SSIS OF TOP FIVE WATER BODIES AND ZONES

a region situated in between the geographical coordinates
18◦00′−18◦07′N and 83◦22′−83◦30′E, have been employed.
Sixty-six water bodies were traced from IRS LISS-III multi-
spectral data with the topographic map reference [see Fig. 4(b)].
The corresponding 66 influence zones, which are defined as the
catchment basins of the corresponding water bodies (markers),
computed by using the technique of skeletonization by zones of
influence are shown in Fig. 4(c). Since the region considered
is in slope category of < 2◦ slope, the elevation differences
across the region considered are minimal, and hence, the region
is treated as flat. In view of this fact, a DEM has not been used.
Water bodies and zones respectively representing markers and
catchment basins are denoted by Ai with proper labeling [see
Fig. 4(d)]. Dilation distances, which are essential parameters
of (8) and (9), between each water body (zone) and all other
destination water bodies (zones) in a cluster of water bodies
(zones) are respectively computed according to (3) and (4) and
are shown in a supporting nonprint material, along with an
adjacency matrix of dimensions 66 × 66, representing zones
adjacent to each zone.

Maximum dilation distances observed from the distances
computed between every water body and every other water
body belonging to a cluster of 66 water bodies are plotted as
functions of water bodies [see Fig. 5(a)]. Similar maximum di-
lation distances observed from the estimated distances between
every zone of influence to every other zone of influence are also
plotted as functions of zones of influence [see Fig. 5(b)]. The
observed minimum distances among 66 maximum distances
for both water bodies [see Fig. 5(a)] and zones [see Fig. 5(b)]
include 53 and 52, respectively (see Table I). This table also
provides details of other four spatially significant water bodies
and zones of influence. The maximum distances among 66
maximum distances for both water bodies and zones observed
include 109 and 110, respectively.

As per (8) and (9), we found out that the water body labeled
as 35 and the zone labeled as 35 are spatially significant. The
corresponding water body and zone of influence are shown in
Fig. 6(a) and (b), respectively. SSIs of 66 water bodies and
66 zones of water body influence are shown. The lower the

Fig. 6. Spatially significant (a) water body labeled as 35 (red color) and
(b) zone of water body influence labeled as 35 (red color).

Fig. 7. (a) Map of India (spatial system) with 28 states (zones), indexed
according to alphabetical order: Andhra Pradesh (A1), Arunachal Pradesh
(A2), Assam (A3), Bihar (A4), Chhattisgarh (A5), Goa (A6), Gujarat (A7),
Haryana (A8), Himachal Pradesh (A9), Jammu and Kashmir (A10), Jarkhand
(A11), Karnataka (A12), Kerala (A13), Madhya Pradesh (A14), Maharashtra
(A15), Manipur (A16), Meghalaya (A17), Mizoram (A18), Nagaland (A19),
Orissa (A20), Punjab (A21), Rajasthan (A22), Sikkim (A23), Tamilnadu
(A24), Tripura (A25), Uttarapradesh (A26), Uttarakhand (A27), West Bengal
(A28). (b) First five spatially significant states with their ranks.

index, the higher is the spatial significance. The zones labeled
as 35, 41, 43, 37, and 46 are the five best zones that have
SSIs of 52, 55, 57, 60, and 62, respectively. The corresponding
NSSIs for these zones include 0.47, 0.50, 0.51, 0.54, and 0.56,
respectively. The SSIs and NSSIs for water bodies are also
shown in Table I. Interestingly, these spatially significant water
body [see Fig. 6(a)] and zone of influence [see Fig. 6(b)]
possess longer boundary being shared with neighboring water
bodies/zones of influence.

B. States of India

The approach demonstrated on a cluster of water bodies has
been extended to recognize a spatially significant state from
a cluster of 28 states of India [see Fig. 7(a)]. The dilation
distances between every state to every other state are estimated,
and origin-state specific maximum distances are computed
(supporting material). Maximum dilation distances observed
from the estimated distances between every state and every
other state of a cluster of 28 states of India are considered,
and the minimum of these maximum distances is considered to
detect the spatially significant state. The minimum of all these
maximum distances is 189, which is followed by 206, 213,
226, and 233. The maximum of maximum distances estimated
between each origin state and all destination states is 383.
The NSSI is computed according to (9). The first five states
that possess the minimum of maximum distances are shown in
Fig. 7(b), and their corresponding SSIs and NSSIs are shown in
Table II.
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TABLE II
SSIs OF TOP FIVE STATES

On Intel Core 2 Duo T5850 at 2.17 GHz with 3-GB random
access memory on a 32-bit operating system, it took 30, 31,
and 17 min, respectively, to compute the dilation distances for
the following cases: 1) 66 water bodies (400 × 400 pixels);
2) 66 zones of influence (400 × 400 pixels); and 3) 28 states
of India (480 × 480 pixels). The number of dilation distances
required to be computed increases with the number of spatial
objects and the sizes of the individual spatial objects. Hence,
the computational complexity increases with increasing number
of spatial objects and spatial resolution. This time could be
significantly reduced by rescaling the data such that the zones
of the cluster do not lose their shape characteristics.

IV. CONCLUSION

The technique proposed here provided the SSI for zones
of a cluster of zones. Identifying a spatially significant zone
via (8) is a scale-invariant process. This equation is sensitive
to variations in rotations and translations and to geometric
distortions but insensitive to variations in the scale of the
considered zones. Mostly, a larger interior zone that could be
reached by other destination zones of a cluster would stand
as a spatially significant zone. Although the application of
this technique is shown for data represented in raster format,
without significant computational difficulty, this technique can
be extended to: 1) a wide class of metric spaces and to other
representations (such as objects bounded by 2-D vectors); and
2) a 3-D case, i.e., by replacing the dilation distance with gray-
scale geodesic distances. This approach provides useful insights
in the following: 1) clustering–classification frameworks; 2) de-
tecting the spatially significant segmented zones (spatial objects
in a 2-D case) obtained via various segmentation approaches;
3) automatically deriving a central node from a large number
of nodes; 4) determining the influence of a node in a vector-
based network setting; and 5) deciding on nodal center(s) to
establish an administrative facility from a cluster of cadastral
zones mapped from remotely sensed satellite data.
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