Georges Matheron Lecture on

MATHEMATICAL MORPHOLOGY IN GEOMORPHOLOGY AND GISCI

B.S. DAYA SAGAR

http://www.isibang.ac.in/~bsdsagar

Systems Science and Informatics Unit (SSIU)

Indian Statistical Institute,
Bangalore, INDIA
6th September 2011

FOUNDING FATHERS OF

MATHEMATICAL MORPHOLOGY

Georges Matheron

Jean Serra

My Connection Degree

First degree separation with Jean Serra

Two-degree separation with Georges Matheron (through SVLN Rao and Jean Serra)

GEORGES MATHERON LECTURERS

Jean Serra 2006

Wynand Kleingeld 2007

Adrian Baddeley 2008

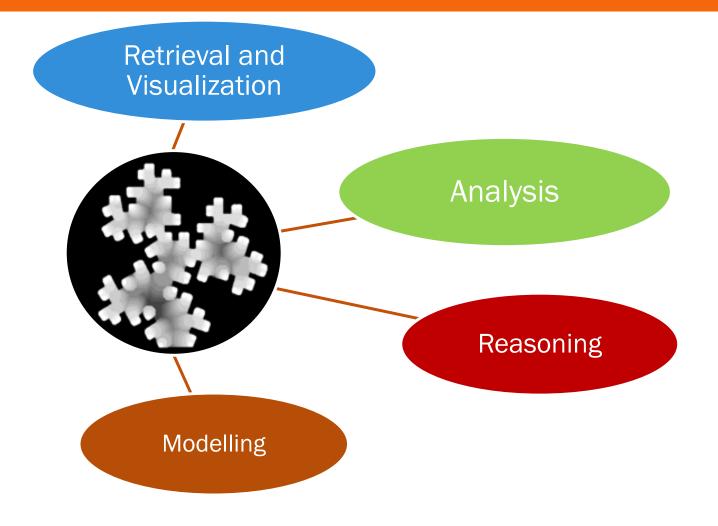
Donald A. Singer 2010

Motivation

To understand the dynamical behavior of a phenomenon or a process, development of a good spatiotemporal model is essential. To develop a good spatiotemporal model, well-analyzed and well-reasoned information that could be extracted / retrieved from spatial and/or temporal data are important ingredients.

Mathematical Morphology is one of the better choices to deal with all these key aspects mentioned.

Mathematical Morphology in Geomorphology and GISci



Outline

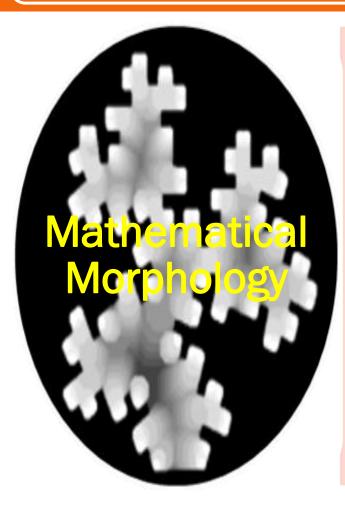
Basic description of Terrestrial Data

Mathematical Morphology in Geomorphology and GISci

Retrieval of Geomorphological phenomena (e.g. Networks), Analysis and quantitative characterization of Geomorphological phenomena and processes via various metrics

Spatial interpolation, Spatio-temporal modeling, spatial reasoning, spatial information visualization

Concepts, Techniques & Tools

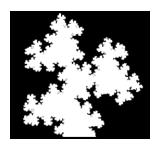


- Morphological Skeletonization
- Multiscale operations, Hierarchical segmentation
- Recursive Morphological Pruning
- Hit-or-Miss Transformation
- Morphological Thinning
- Morphological Reconstruction
- Watersheds
- Morphological shape decomposition
- Granulometries
- Hausdorff dilation (erosion) distance
- Morphological interpolation
- Directional Distances
- SKIZ and WSKIZ

Terrestrial Data: Various Representations

Functions (DEMs, Satellite Images, Microscopic Images etc)

Sets (Thresholded Elevation regions, Binary images decomposed from images)



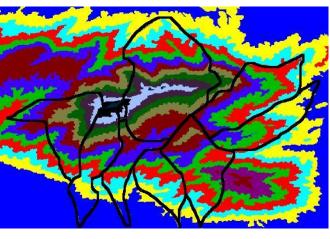
Skeletons (Unique topological networks)

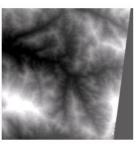
I. Mathematical Morphology

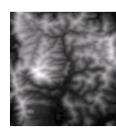
Binary Mathematical Morphology

Grayscale Morphology

Digital Elevation Models







II.I NETWORKS EXTRACTION & THEIR PROPERTIES

12 September 2011 B. S. Daya Sagar

Networks extraction and their properties: Sub-basins delineation

- Geomorphologic basin is an area outlined by a topographic boundary that diverts water flow to stream networks flowing into a single outlet.
- DEM is an useful source for watershed and network extraction.
- Mydrologic flow is modelled using eight-direction pour point model (Puecker et. al., 1975).

75	73	72
73	70 🚃	69
74	72	71

- The two topologically significant networks, include Channel & Ridge networks.
- The paths of these extracted networks are the crenulations in the elevation contours.
- Crenulations can be isolated from DEMs by using nonlinear morphological transformations.

Network Extraction: Binary Morphology-Based

Step-1:

Threshold decomposition of f(x,y)

Step 2:

Skeletonization

Step 3:

Systematic logical union and difference to extract network within each spatially distributed region and Union of network(s) obtained

Equations for Network Extraction

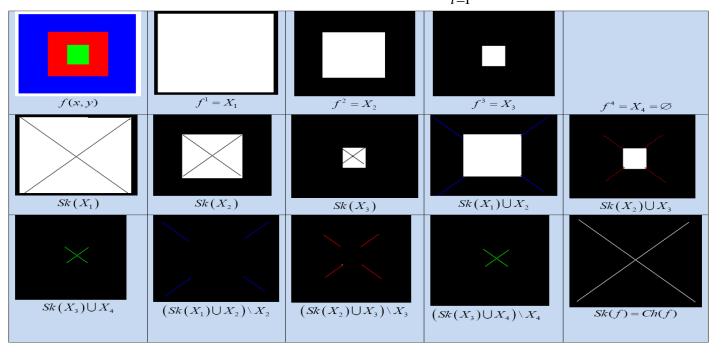
$$f^{t} = \begin{cases} 1 & if & f(x,y) \ge t \\ 0 & if & f(x,y) < t \quad where \quad 0 \le f(x,y) \le 255 \end{cases}$$

$$f^{t} = X_{t}; f^{t+1} = X_{t+1}; \dots; f^{N} = X$$

$$Sk_{n}(X_{t}) = (X_{t} \ominus nB) \setminus (X_{t} \ominus nB) \circ B \qquad n = 0, 1, 2, \dots, N$$

$$Sk(X_{t}) = \bigcup_{n=0}^{N} Sk_{n}(X_{t})$$

$$CH(f) = \bigcup_{t=1}^{255} ((Sk(X_{t}) \cup X_{t+1}) \setminus X_{t+1})$$



Networks extraction: Grayscale Morphology-Based

The DEM, f is first eroded by B_n with n=1, 2,...,N, and the eroded DEM is opened by B of the smallest size. The opened version of each eroded image is subtracted from the corresponding eroded image to produce the nth level subsets of the ridge network. Union of these subsets of level n=0 to N gives the ridge network for the DEM.

$$RID_{n}^{i}(f) = [(f \Theta B_{n}^{i}) \setminus \{[(f \Theta B_{n}^{i}) \Theta B_{n}^{i}] \oplus B_{n}^{i}]\}]$$

$$RID(f) = \bigcup_{\substack{n=0\\i=1}}^{4} [RID_{n}^{i}(f)]$$

Networks extraction and their properties

DEM, f is first dilated by B_n and the dilated f is closed by B of the smallest size. The closed version of each dilated image is subtracted from the corresponding dilated image to produce the nth level subsets of the channel network. Union of these subsets of level n = 0 to N gives the channel network for the DEM.

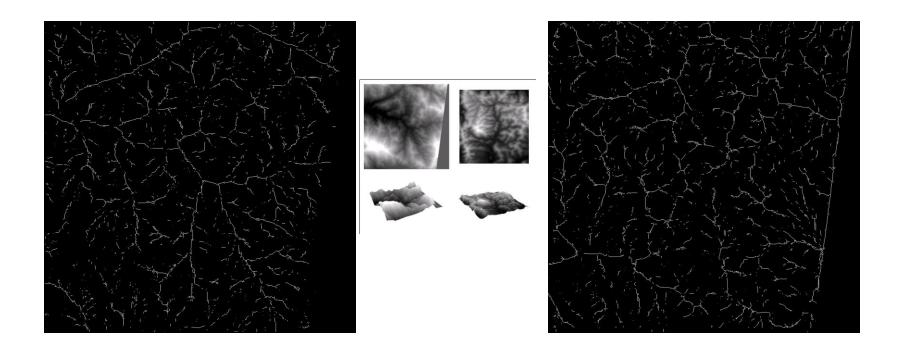
$$CH_{n}^{i}(f) = [(f \oplus B_{n}^{i}) \setminus \{[(f \oplus B_{n}^{i}) \oplus B_{n}^{i}] \ominus B_{n}^{i}\}]$$

$$CH(f) = \bigcup_{\substack{n=0\\i=1}}^{4} [CH_{n}^{i}(f)]$$

1-D structuring elements of primitive size

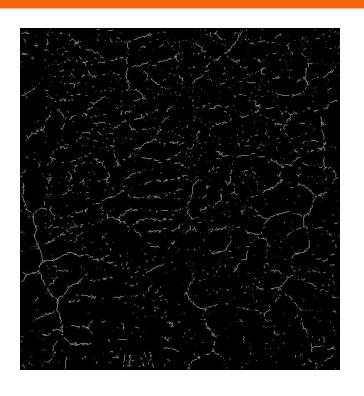
1		1					1
1	1 1 1		1			1	
1				1	1		

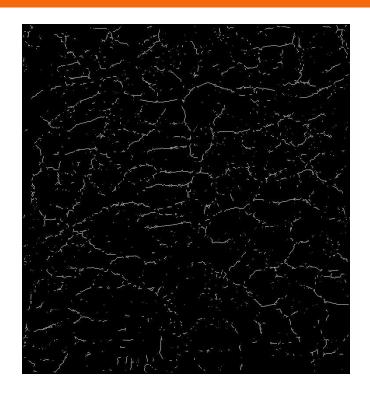
Networks extraction and their properties



(a) Ridge networks, and (b) channel networks extracted from Cameron Highlands DEM.

Networks extraction and their properties





(a) Ridge networks, and (b) channel networks extracted from Petaling DEM.

Algorithm

- Algorithm is to extract singular networks such as channel and ridge connectivity networks from DEMs.
- Sub watershed boundary in DEM is automatically generated by considering channel and 50 Step-3: ridge connectivity networks.
- Mathematical morphology transformations such as dilation, erosion, opening and closing are used in this algorithm.

Step-1:

CH_e(M) =
$$e_{3}^{e}$$
(M) / γ_{3}^{1} { e_{3}^{e} (M) }
e = 0,1,2,...,N

Step-2:

CH (M) =
$$\bigcup_{e=0}^{N} CHe(M)$$

e = 0,1,2,...,n

$$RID_{e}(M) = \epsilon \frac{e}{s} \{ \{ CH(M) \}^{c} \} / / \gamma \frac{1}{s} \{ \epsilon \frac{e}{s} \{ \{ CH(M) \}^{c} \} \}$$

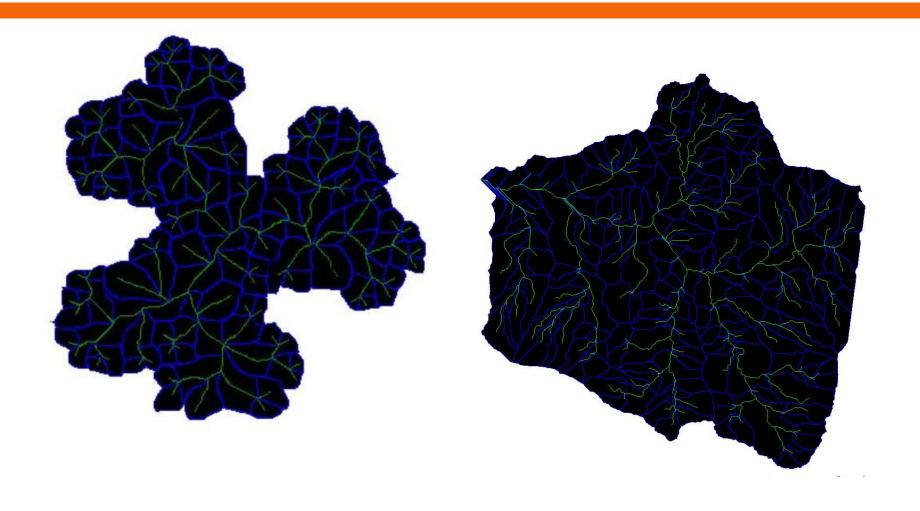
Step-4:

$$RID(M) = \bigcup_{e=1}^{N} RID_{e}(M)$$

$$e = 0, 1, 2, \dots, n$$

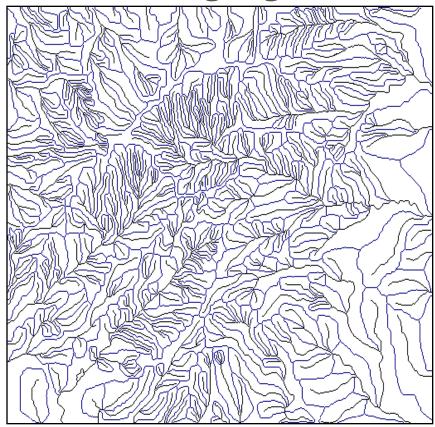
Step-5:

Decomposed basins and networks



Channel Network of Gunung Ledang Region

Ridge Network of Gunung Ledang Region



Networks: Binary Vs Grayscale

Binary Morphology

Binary morphology-based network extraction is:

- more stable,
- more accurate, and
- computationally expensive

Gray-scale Morphology

Grayscale-based network extraction—

- may not be accurate like binary-morphology based—
 - generates network that yields disconnections some times, but
- computationally not expensive.

II.II. Terrestrial Analysis

Scale invariance and Power-laws in networks

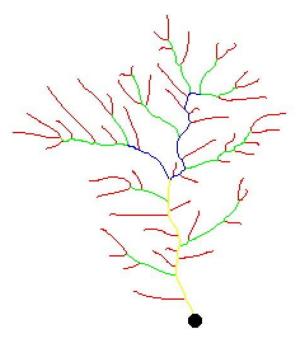
Shape-dependant power-laws

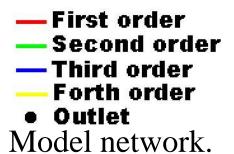
Granulometric analysis

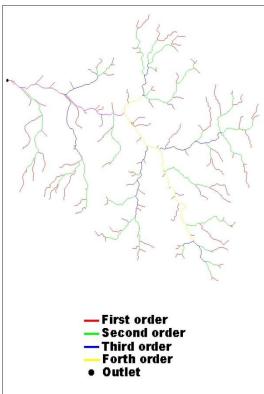
II.II.I. Scale Invariant Power-laws: Morphometry and Allometry of Networks

First step in drainage basin analyses is the classification of stream orders by Hortonordering Strahler's system (Horton, 1945; Strahler, 1957). The order of the whole tree is defined to be the order of the root. This ordering system has been found to correlate well with important basin properties wide in range of environments.

This figure shows a sample network classified based on Horton-Strahler's ordering system.







Cameron Highland channel network.

Scale Invariant Power-laws: Two Topological Quantities

Two topological quantities bifurcation ratio (R_b) and length ratio (R_l)

$$R_{b} = \frac{N_{i}}{N_{i+1}}$$
 $R_{1} = \frac{L_{i}}{L_{i-1}}$

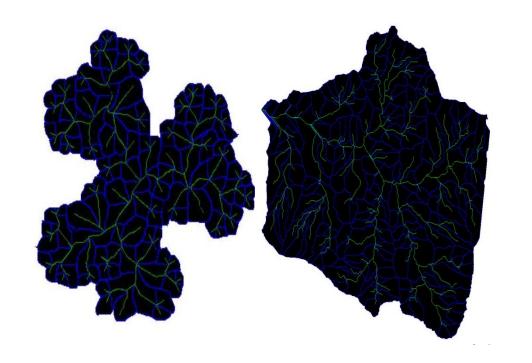
Networks extraction and their properties: Morphometry

- Besides these two ratios, the universal similarity of stream network can be shown through Hack's law and Hurst's law as follows:
- Mack's Law: $L_{
 m mc} \propto A^n$ where A is the area of basin with main channel length L $_{
 m mc}$.
- $\begin{array}{ccc} \hbox{$\stackrel{\hbox{$\hbox{$\bf Hurst's law}:}}{$\scriptstyle L_{\perp} \propto L^H$}} & L_{\parallel} \propto L^H \\ & \hbox{$\scriptstyle \hbox{$where $L_{||}$ is the longitudinal length and}} \\ & L \ \hbox{$\scriptsize \hbox{$transverse length respectively.}} \end{array}$

Allometric power-laws

- Allometric power-laws are derived between the basic measures such as basin area, basin perimeter, channel length, longitudinal length and transverse length
- Observed that these powerlaws are of universal type as they exhibit similar scaling relationships at all scales.

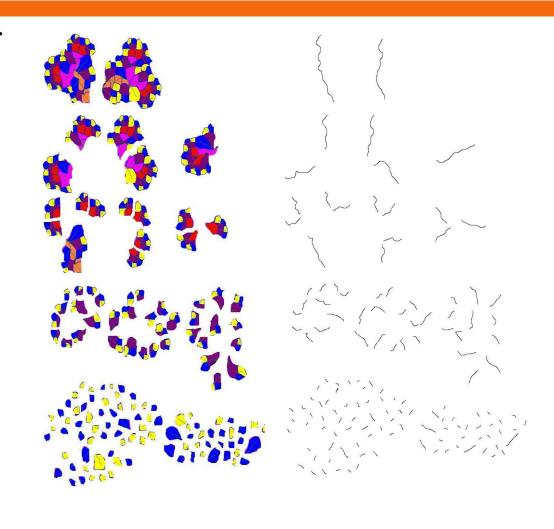
Existing allometric power-laws: Decomposed basins & networks



Existing allometric power-laws: Decomposed basins and networks

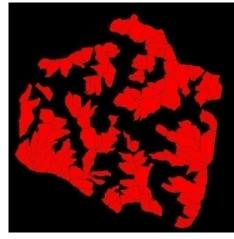
The number of decomposed sub-basins of respective orders from the simulated 6th order F-DEM include:

- two 5th
- five 4th
- ten 3rd
- thirty six 2nd, and
- eighty six 1st order basins.



Existing allometric power-laws:

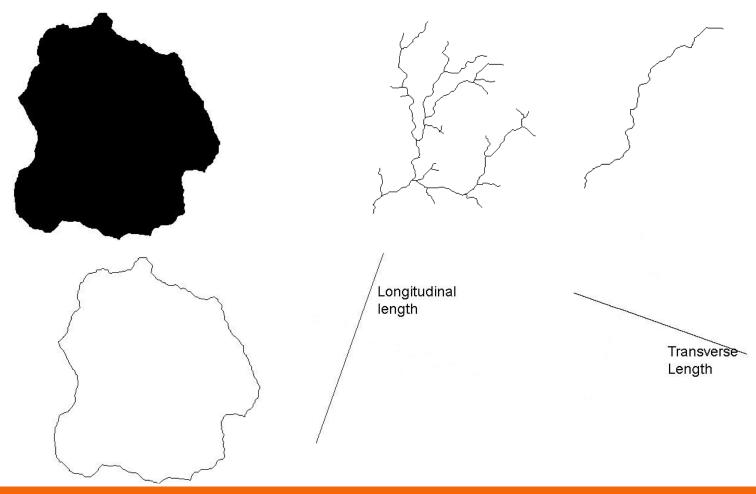
Decomposed basins and networks



Decomposed sub-basins are

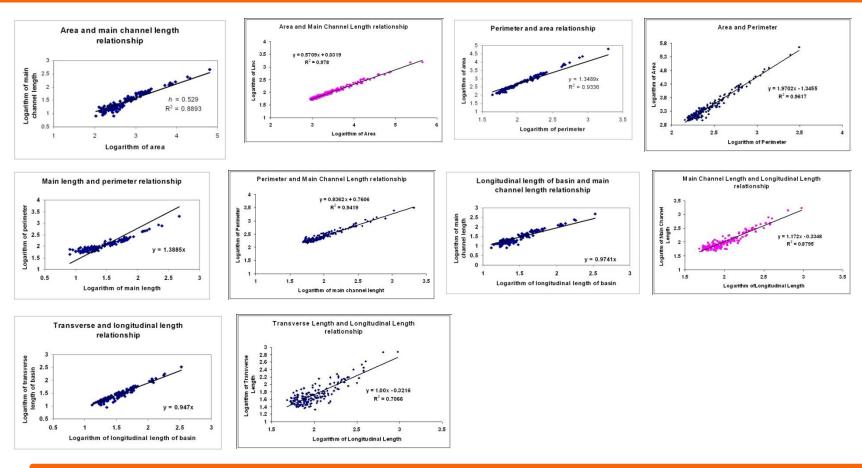
- two 4th
- eight 3rd
- twenty-eight 2nd, and
- one hundred twenty-four 1st order basins.

Existing allometric power-laws: Basic Measures



Basic measures for a basin, (a) basin area, (b) total channel length, (c) main channel length, (d) basin perimeter, (e) longitudinal length and (f) transverse length.

Scale Invariant allometric power-laws



Allometric relationships among various areal and length parameters for all sub-basins of F-DEM and TOPSAR DEM.

Scale Invariant allometric power-laws F-DEM TOPSAR DEMs

Relations	Notatio	For	Basin's	andan				
Relations	ns	all orders	1	2	3	4	5	6
A and L_{mc}	h	0.53	0.502	0.56	0.56	0.55	0.55	0.56
A and P	α	1.35	1.31	1.36	1.41	1.44	1.48	1.46
P and L_{mc}	β	1.39	1.51	1.32	1.28	1.26	1.23	1.23
L_{mc} and L_{ll}	-	0.97	0.92	1.01	1.04	1.03	0.94	0.95
L_{\perp} and $L_{ }$	Н	0.95	0.94	0.94	0.96	0.98	0.94	0.98
2h	D_{Lmc}	1.06	1.00	1.11	1.11	1.10	1.10	1.12
2/α	D _p	1.48	1.53	1.47	1.42	1.39	1.35	1.37
$1 + \frac{D_{Lmc}}{1 + H}$	-	1.55	1.52	1.57	1.59	1.56	1.57	1.57

Relations	Notatio	For	Basin's order					
	ns	all orders	1	2	3	4	5	
A and L_{mc}	h	0.57	0.60	0.57	0.50	0.58	0.56	
A and P	α	1.97	1.62	1.78	1.78	1.69	1.62	
P and $L_{\it mc}$	β	0.84	0.78	0.92	0.88	1.09	1.05	
$L_{\rm mc}$ and $L_{\rm ll}$	1	1.17	0.75	1.00	0.92	1.02	1.08	
L_{\perp} and $L_{ }$	Н	1.00	0.39	0.53	0.68	1.00	0.97	
2h	D_{Lmc}	1.14	1.20	1.14	1.00	1.16	1.12	
2/ α	D_p	1.02	1.23	1.12	1.12	1.18	1.23	
$1 + \frac{D_{Lmc}}{1 + H}$	-	1.57	1.86	1.74	1.60	1.58	1.57	

Existing allometric power-laws: Scaling laws

Our results shown for basins derived from F-DEM and TOPSAR DEM are in good accord with power-laws derived from Optimal Channel Networks (Maritan et. al., 2002) and Random Self-Similar Networks (Veitzer and Gupta 2000) and certain natural river basins.

Novel scaling relationships between travel-time channel networks, convex hulls and convexity measures

Network topology and watershed geometry are important features in terrain characterization.

Travel-time networks are sequence of networks generated by removing the extremities of the network iteratively. Hit-or-Miss transformation and Thinning transformations is used in generating travel-time network. Half-plane closing-based algorithm (Soille, 2005) is employed to generate convex hulls for these travel-time networks.

Length of the travel-time network and area of the corresponding convex hull are used to derive new scaling exponents.

Proposed scaling relationships:

Travel-time networks

- The process of deleting the end points from the networks is named as pruning.
- To decompose the stream network subsets from n = 1 to N, structuring template of B_1 and B_2 are decomposed into various subsets, B_n^i where i = 1, 2, ..., 8 and n = 1, 2
- Both structuring templates are disjointed into eight directions. The intersecting portion of eroded S and eroded Sc by disjointed templates $\{B_1^k\}$ and $\{B_2^k\}$ k = 1,2,...,8 respectively are computed to derive pruned version of S.
- The X's in the structuring templates signifies the 'don't care' condition it doesn't matter whether the pixel in that location has a value of 0 or 1.

$B_1^1 = 0 1 0 \\ 0 0 0$	$ \begin{array}{ccccc} 0 & 0 & 1 \\ B_1^2 = 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} $	$ \begin{array}{ccccc} 0 & 0 & 0 \\ B_1^3 = 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} $	$B_1^4 = 0 1 0 \\ 1 0 0$
$B_1^5 = 0 1 0 \\ 0 0 0$	$ \begin{array}{ccccc} 0 & 0 & X \\ B_1^6 = 0 & 1 & 1 \\ 0 & 0 & X \end{array} $	$B_1^7 = 0 1 0 \\ X 1 X$	$B_1^8 = 1 1 0$ $X 0 0$ $X 0 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_2^4 = 1 0 1 \\ 0 1 1$
$X = 0 X$ $B_2^5 = 1 0 1$ $1 1 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_{2}^{7} = 1 0 1$ $X 0 X$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Proposed scaling relationships: Travel-time networks

Mathematically,

$$S*B = (S \ominus B_1^k) \cap (S^c \ominus B_2^k)$$
, where $B = B_1^k \cup B_2^k$

- By subtracting (S * B) from S, a pruned version of S is obtained and expressed as
- $S_1 = S \otimes \{B\} \text{ where, } S \otimes \{B\} = S (S*B)$ $\{B_1, B_1, \dots, B_1, \dots, B_1, \dots, B_2, \dots, B_2, \dots, B_2, \dots \}$
- After pruning of S in first pass with B₁, the process continue with pruning with B₂ and so on until S is pruned in the last pass with B₈.

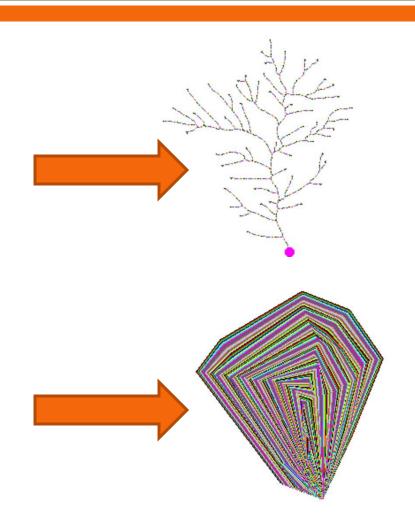
$$S \otimes \{B\} = ((\cdots((S \otimes B^1) \otimes B^2) \cdots) \otimes B^8)$$

- 50 The whole process removes the first-encountered open pixels of S and produces S₁.
- Repeating the same process on S_1 will produce S_2 . The process is repeated until no further changes occur, where the closed outlet is reached.

Proposed scaling relationships: Convex hull

Convex hull is the smallest convex set that contains all the points of the network.

Since convex hull represents the basin of network, convex hulls of the travel-time networks are generated.



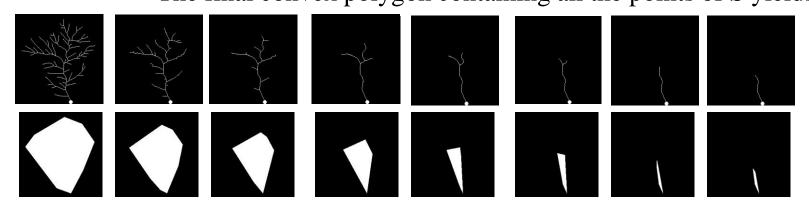
Proposed scaling relationships : Pruned network and convex hull

Properties of the pruned network:

1.
$$S = \bigcup_{n=0}^{N-1} (S_n - S_{n+1})$$

2.
$$S_N \subset S_{N-1} \subset \cdots \subset S_2 \subset S_1 \subset S$$

3. S, S_1, S_2, \dots, S_N obtained by iterative **pruning**. The final convex polygon containing all the points of S yields C(S).



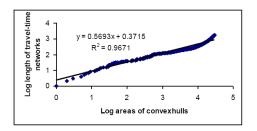
- Network pruning network length = S_n
- Convex hull computed convex hull area = $C(S_n)$
- So Convexity measures, CM =ratio between the areas of S_n and $C(S_n)$.

$$L(S_n) \sim A[C(S_n)]^{\alpha}$$

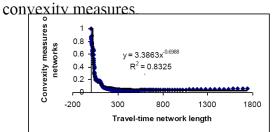
$$CM(S_n) \sim \frac{1}{L(S_n)^{\beta}}$$

$$CM(S_n) \sim \frac{1}{A[C(S_n)]^{\lambda}}$$

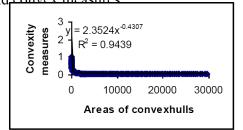
Graph of lengths of the sequential pruned networks versus the corresponding areas of convex hulls.



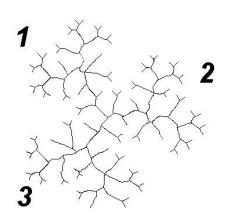
Relationship between channel lengths and

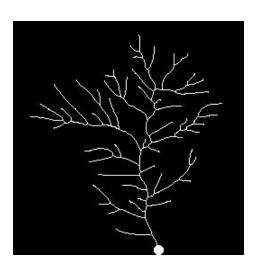


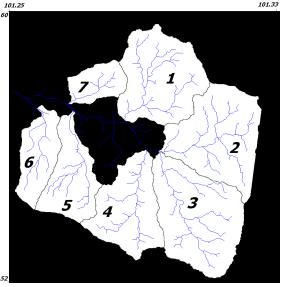
Relationship between areas of convex hulls and convex measures



- Sample basin
- Simulated F-DEM basins
- Cameron basins
- Petaling basins







B. S. Daya Sagar

Network	α, (R ²)	σ, R ²	λ, R ²	R_b	R_{l}	h	Н
Sample	0.5693, (0.9671)	0.6988, (0.8325)	0.4307, (0.9439)	3.84	1.66	-	-
Basin 1 (Cameron)	0.5777, (0.9883)	0.7109, (0.9358)	0.4223, (0.9783)	3.60	2.21	0.5414	0.9714
Basin 2 (Cameron)	0.5774, (0.9925)	0.7189, (0.9586)	0.4226, (0.9861)	4.35	2.25	0.5561	1
Basin 3 (Cameron)	0.5799, (0.9934)	0.7131, (0.963)	0.4201, (0.9875)	3.31	2.39	0.5612	0.9256
Basin 4 (Cameron)	0.5521, (0.9835)	0.7814, (0.92)	0.4479, (0.9752)	4.47	3.18	0.5671	0.9506
Basin 5 (Cameron)	0.5798, (0.9905)	0.7083, (0.9469)	0.4202, (0.982)	3.31	2.16	0.5766	0.9162
Basin 6 (Cameron)	0.5819, (0.9865)	0.6955, (0.925)	0.4181, (0.9743)	4.00	2.64	0.5746	0.8597
Basin 7 (Cameron)	0.5885, (0.9887)	0.68, (0.9348)	0.4115, (0.9772)	2.82	2.39	0.5548	0.895
Basin 1 (Petaling)	0.5462, (0.969)	0.7741, (0.8561)	0.4538, (0.9557)	5.00	2.57	0.5568	0.9319
Basin 2 (Petaling)	0.5393, (0.9899)	0.8357, (0.9532)	0.4607, (0.9863)	4.00	3.51	0.5828	0.8623
Basin 3 (Petaling)	0.5198, (0.9852)	0.8953, (0.9367)	0.4802, (0.9827)	4.24	3.30	0.597	0.9019
Basin 4 (Petaling)	0.5592, (0.9938)	0.7771, (0.9684)	0.4408, (0.99)	4.24	2.96	0.5807	0.8902
Basin 5 (Petaling)	0.5729, (0.9906)	0.729, (0.9492)	0.4271, (0.9832)	4.79	3.96	0.5844	0.8704
Basin 6 (Petaling)	0.5547, (0.9872)	0.7798, (0.937)	0.4453, (0.9804)	4.89	3.42	0.5713	0.9116
Basin 7 (Petaling)	0.6059, (0.9929)	0.6387, (0.9551)	0.3941, (0.9834)	3.60	3.39	0.5865	0.8312

Allometric power-laws between travel-time channel networks, convex hulls, and convexity measures for model network, networks of Hortonian fractal DEM, and networks of fourteen basins of Cameron Highlands and Petaling region.

These proposed scaling exponents are shown for basins derived from simulated F-DEM and TOPSAR DEMs.

These exponents are scale-independent.

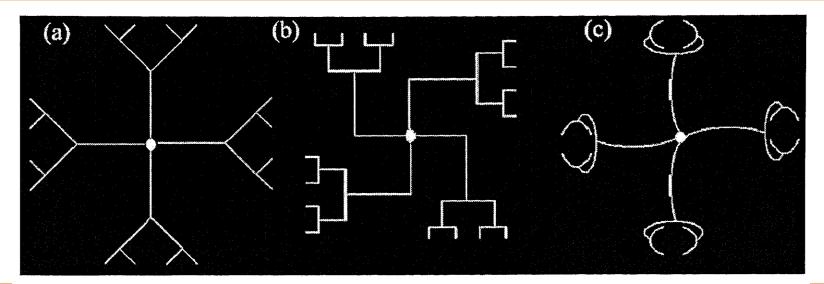
At macroscopic level, these exponents complement with other existing scaling coefficients can be used to identify commonly sharing generic mechanisms in different river basins.

II.II. Scale Invariant But Shape Dependent Power-laws

Objectives

To propose morphology based method via fragmentation rules to compute scale invariant but shape-dependent measures of non-network space of a basin.

To make comparisons between morphometry based parameters / dimensions and dimensions derived for non-network space.



Topologically Invariant networks with variant geometric organization

Proposed Technique

Step1: Channel network is traced from topographic map.

Step2: Channel network is dilated and eroded iteratively until the entire basin is filled up with white space. This step is to generate catchment boundary automatically. Dilation followed by erosion is called structural closing, which will smoothen the image.

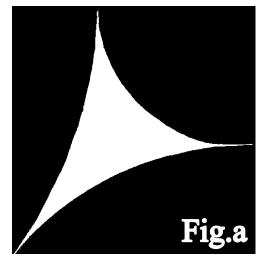
Step3: Generate the basin with channel network and non-network space with boundary by subtracting the channel network from the catchment boundary achieved in Step2.

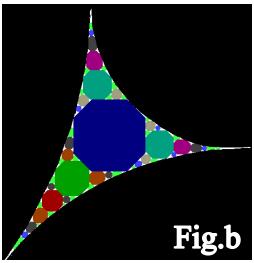
Step4: Structural opening (erosion followed by dilation) is performed recursively in basin achieved in Step3 to fill the entire basin of non-network space with varying size of octagons.

Step5: Assign unique color for each size of octagons.

Step6: Compute morphometry for the basin.

Step7: Compute shape dependent dimension.





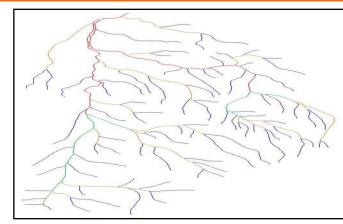
Power law relationship

- As per the previous fig. the slopes of the best-fit lines (α_N and α_A) for number-radius and arearadius relationships yield 2.37 and 1.34.
- These slope values of the best-fit lines provide shape dependent dimensions as $D_N = \alpha_N 1$ and $D_A = \alpha_A$.
- As in previous Fig., D_N and D_A for non-network space yield 1.37 and 1.34.
- A Power-law relationship is shown in earlier Fig. with an exponent value 1.79 between the area and number of NODs observed with increasing radius of structuring template.

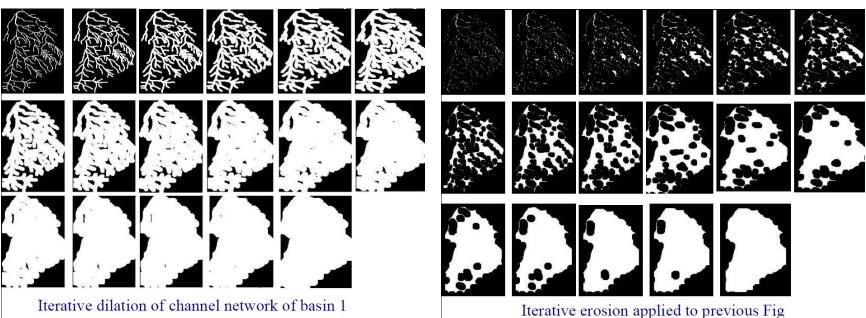
(a) Appollonian Space, and (b) after decomposition by means of octagon.

Algorithm Implementation:

Step 1: Channel network of sub basin 1

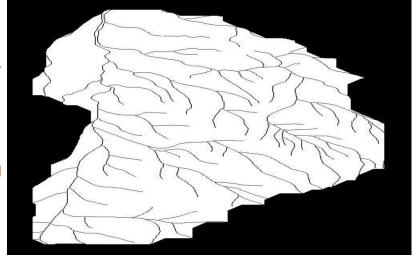


Step 2: Close-Hull Generation



Step 3: Non-network space of basin 1

Iterative erosion applied to step-3 Fig.

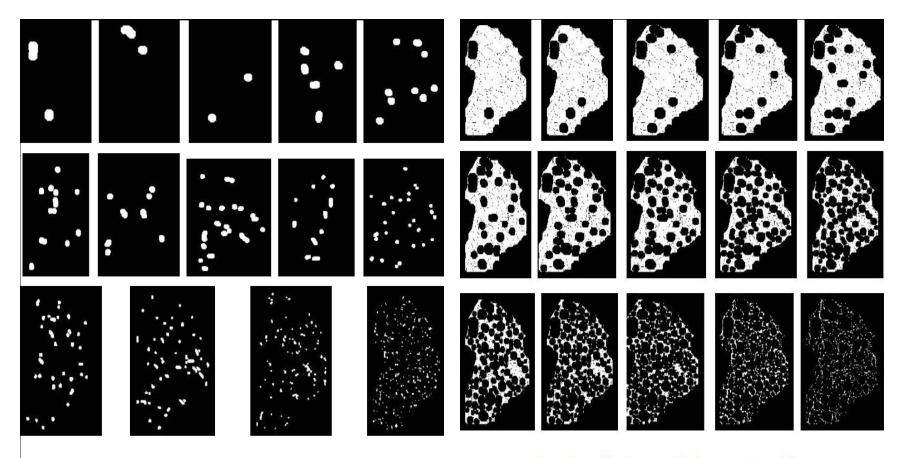




Iterative erosion applied to previous Fig.

Iterative dilation applied to previous Fig.

Step 4: Non-Network Space Decomposition

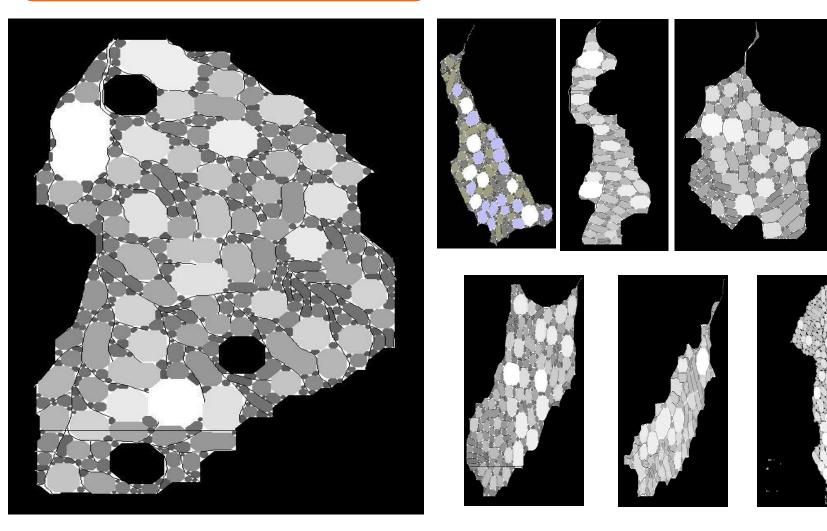


Iterative erosion applied to previous Fig.

Iterative dilation applied to previous Fig.

Decomposition of Non-network space in to non-overlapping disks of octagon shape of several sizes for basin 1

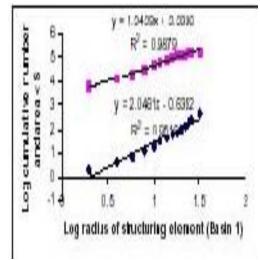
Non-Network Spaces Packed with Non-Overlapping Disks of basins 2 to 8

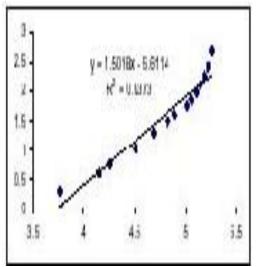


Dimensions derived from morphometry of network and non network space

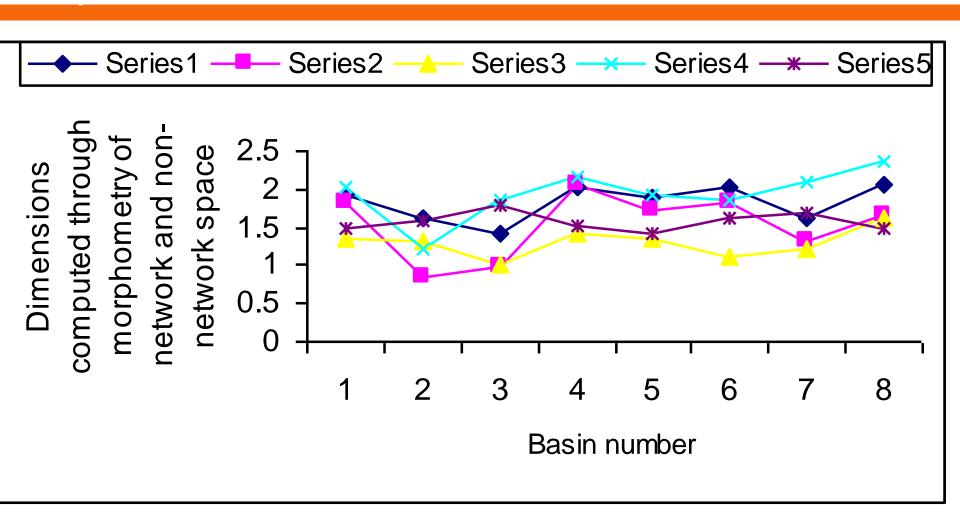
Morphometric parameter computations achieved through decomposition of non-network space

Basi n#	Network FD	Log Rs/ Log RN	R vs A	R vs N	A vs N
1	1.83	1.93	1.34	2.06	1.50
2	0.86	1.63	1.33	1.23	1.59
3	0.98	1.41	1.02	1.87	1.80
4	2.07	2.01	1.43	2.17	1.52
5	1.73	1.90	1.34	1.94	1.43
6	1.84	2.04	1.13	1.87	1.63
7	1.33	1.61	1.23	2.08	1.70
8	1.65	2.06	1.61	2.38	1.49





Basin number versus varied dimensions derived from morphometry of networks and non-network spaces



II.II.III. Granulometric analysis of digital topography

Granulometric analysis

Morphological multiscaling transformations are shown to be a potential tool in deriving meaningful terrain roughness indexes.

Consider two different basins of two different physiographic setups (fluvial and tidal) that possess similar topological quantities, i.e., their networks may be topologically similar to each other. But the processes involved therein may be highly contrasting due to their different physiographic origins. Under such circumstances, the results that exhibit similarities in terms of topological quantities and scaling exponents would be insufficient to make an appropriate relationship with involved processes.

Therefore, granulometric approach is proposed to derive shape-size complexity measures of basins. This approach is based on probability distribution functions computed for both protrusions and intrusions (in other words supremums and infimums) of various degrees of sub-basins.

This granulometry-based technique is tested on sub-basins with various sizes and shapes decomposed from DEMs of two distinct geomorphic regions.

Granulometric Analysis

- Multi-scale opening till completely black
- Multi-scale closing till completely white
- Subtraction
- Probability function
- Average size

Average roughness

$$PS_{f}(-n,B) = A[(f \bullet B_{n}) - (f \bullet B_{n-1})], 1 \le n \le K$$

$$PS_{f}(+n,B) = A[(f \circ B_{n}) - (f \circ B_{n+1})], 0 \le n \le N$$

$$ps(n,f) = \frac{A(f \circ B_{n}) - A(f \circ B_{n+1})}{A(f \circ B_{0})}, n = 0,1,2,...,N$$

$$ps(-n,f) = \frac{A(f \bullet B_{n}) - A(f \bullet B_{n-1})}{A(f \bullet B_{k}) - A(f \bullet B_{0})}, n = 1,2,...,K$$

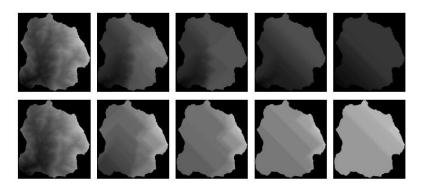
$$AS(f/B) = \sum_{n=0}^{N} nps(n,f)$$

$$H(f/B) = -\sum_{k=0}^{n} ps(n,f) \log ps(n,f)$$

Anti(Granulometric) Analysis

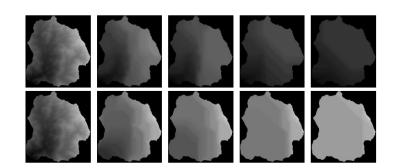
Multiscale opening/closing by rhombus

• Scale 1, 40, 80, 120, 160



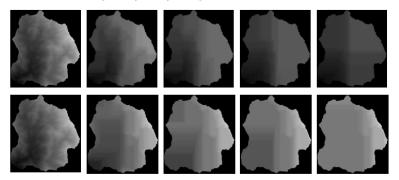
Multiscale opening/closing by octagon

• Scale 1, 30, 60, 90, 120



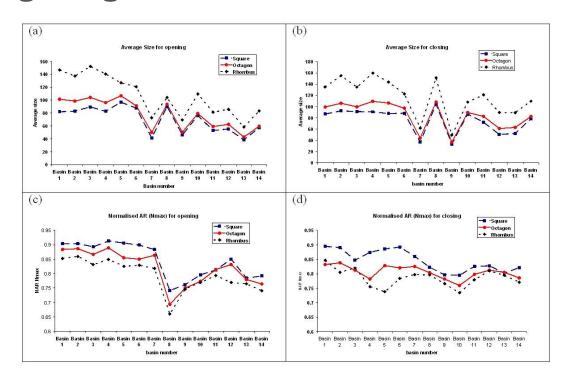
Multiscale opening/closing by square

• Scale 1, 20, 40, 60, 80



Granulometric analysis: Basin wise analysis

- Average size 14 sub-basins
- Average roughness 14 sub-basins



Granulometric Analysis: Basin wise analysis

The number of iterations required to make each sub-basin either become darker or brighter depends on the size, shape, origin, orientation of considered primitive template used to perform multiscale openings or closings, and also on the size of the basin and its physiographic composition. More opening/closing cycles are needed when structuring element rhombus is used, and it is followed by octagon and square.

Mean roughness indicates the shape-content of the basins. If the shape of SE is geometrically similar to basin regions, the average roughness result possesses lower analytical values. If the topography of basin is very different from the shape of SE, high roughness value is produced, which indicates that the basin is rough relative to that SE. In general, all basins are rougher relative to square shape as highest roughness indices are derived when square is used as SE.

A clear distinction is obvious between the Cameron and Petaling basins. Generally, roughness values of Cameron basins are significantly higher than that of Petaling basins.

The terrain complexity measures derived granulometrically are scale-independent, but strictly shape-dependent. The shape dependent complexity measures are sensitive to record the variations in basin shape, topology, and geometric organisation of hillslopes.

Granulometric analysis of basin-wise DEMs is a helpful tool for defining roughness parameters and other morphological/topological quantities.

III. Mathematical Morphology in GISci

Spatial Interpolations

Spatial Reasoning

- Strategic set identification
- Directional Spatial Relationship
- Point-to-Polygon Conversion

III.I. Spatial Interpolations

VISUALIZATION OF SPATIO-TEMPORAL BEHAVIOUR
OF DISCRETE MAPS VIA GENERATION OF
RECURSIVE MEDIAN ELEMENTS

Outline

Mathematical Morphological Transformations employed include:

Hausdorff Dilation, Hausdorff Erosion,
Morphological Median Element Computation, and
Morphological Interpolation.

Objectives

To show relationships between the layers depicting noise-free phenomenon at two time periods.

To relate connected components of layers of two time periods via FOUR possible categories of spatial relationships of THREE groups.

To propose a framework to generate recursive interpolations via median set computations.

To demonstrate the validity of the framework on epidemic spread.

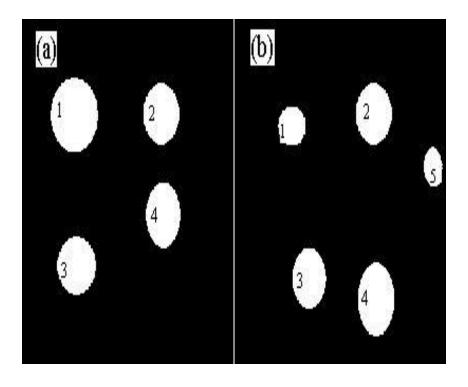
THREE Groups and FOUR Categories??

Three groups are conceived by checking the intersection properties between the corresponding connected components.

Four categories under the above three groups are visualized via logical relationships and Hausdorff erosion and Hausdorff dilation distances.

What are these Hausdorff distances?

What basics do we require to know to compute these distances?



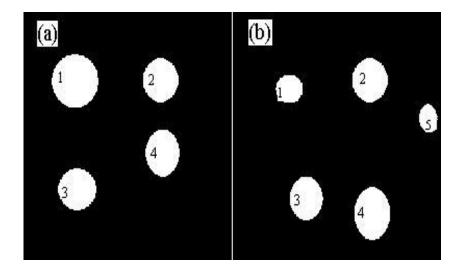
Spatial Relationships Between Sets and Their Categorization

Ordered sets.

semi-ordered sets, if subsets of X^t (resp. X^{t+1}) are only partially contained in the other set X^{t+1} (resp. X^t).

Whereas, (X^t) and (X^{t+1}) are considered as *disordered* sets if there exists an empty set while taking the intersection of (X^t) and (X^{t+1}) (or) of their corresponding subsets.

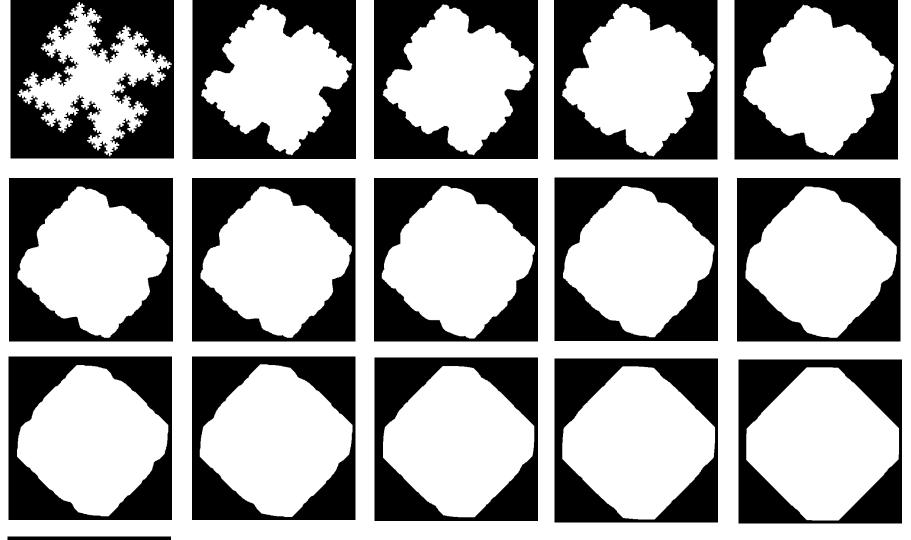
Description of categories via logical relations



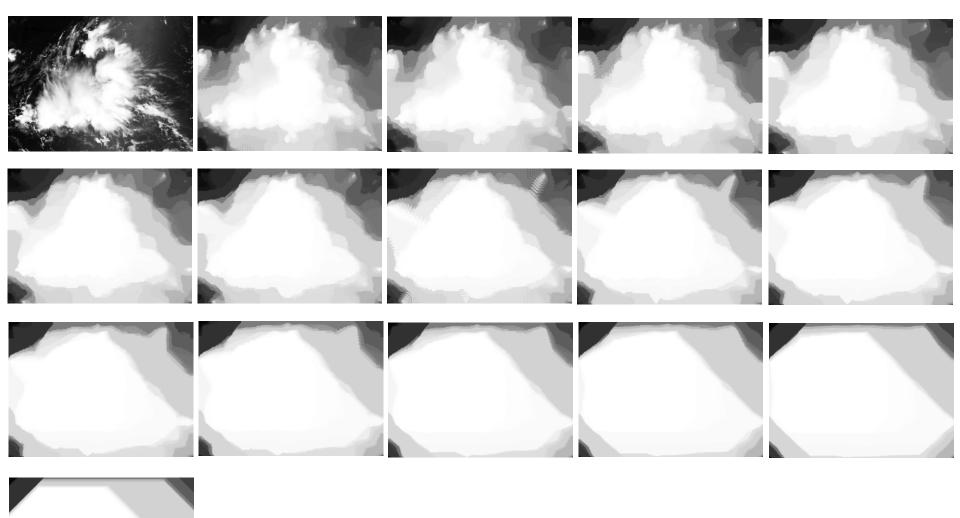
Categories via Hausdorff Erosion and Dilation Distances

TABLE 1. CATEGORY-WISE HAUSDORFF DISTANCES

Group	Category	$\sigma(X_i^t, X_i^{t+1})$	$\rho\left(X_{i}^{t}, X_{i}^{t+1}\right)$
I	1	0	0
I	2	≥1	≥1
II	3	Does not exist	≥1
III	4	Does not exist	Does not exist



Morphological interpolation sequence of fractal M_1 and its convex hull M_{16} (left-right, then topbottom).



Morphological interpolation sequence of cloud field f_I and its convex hull f_{I6} (left-right, then topbottom).

Interpolated Sequence of Lakes' Data of Two Seasons

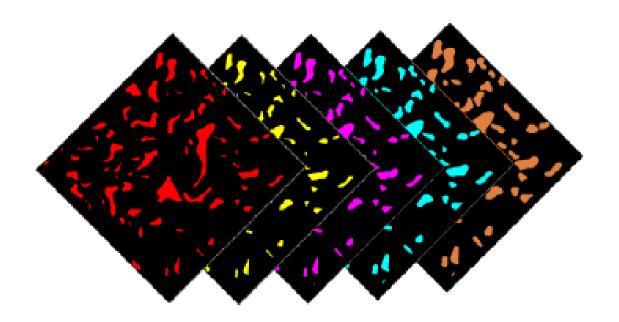
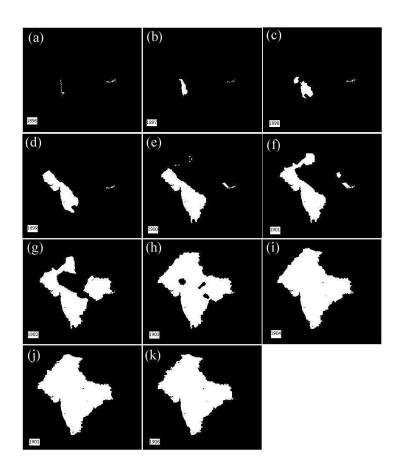


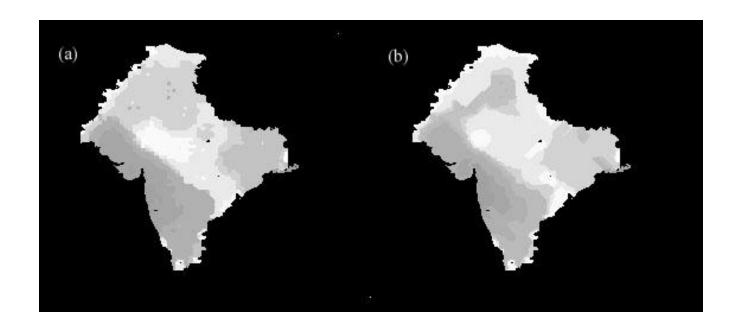
Fig. 4. A sequence of interpolated sets (slices) in between the two input slices shown in Figs. 3a, b. Equations 8(a) and 14 are used to recursively generate the interpolated slices. The layer depicting water bodies with magenta color is the median set shown in Fig. 3c.

Observed and Interpolated Epidemic Spread Maps http://www.isibang.ac.in/~bsdsagar/AnimationOfEpidemicSpread.avi





Observed and Interpolated Sequences



III.II. Spatial Reasoning

Strategically important set(s)

Directional spatial relationship

Point-polygon conversion

III.II.I. Strategically significant state(s)

$$H/P(A_{ij}) = -\sum_{\substack{i \neq j \\ i \neq j}} \Pr\left[P(A_{ij})\log\Pr\left[P(A_{ij})\right]\right]$$

$$H/C(A_{ij}) = -\sum_{\substack{i \neq j \\ i \neq j}} \Pr\left[C(A_{ij})\log\Pr\left[C(A_{ij})\right]\right]$$

$$H/d(A_{ij}) = -\sum_{\substack{i \neq j \\ i \neq j}} \Pr\left[d(A_{ij})\log\Pr\left[d(A_{ij})\right]\right]$$

$$H/d(A_{ij}) = -\sum_{\substack{i \neq j \\ i \neq j}} \Pr\left[d(A_{ij})\log\Pr\left[d(A_{ij})\right]\right]$$

$$C(A_{ij}) = \min_{\substack{i \neq j \\ i \neq j}} \{n : A_{j} \subseteq (A_{i} \oplus nB)\},$$

$$(SH_{i}^{P}) = \min_{\substack{i \neq j \\ i \neq j}} \{H/P(A_{ij})\} (SA_{i}^{P}) = \max_{\substack{i \neq j \\ i \neq j}} \{\sum_{i} NP(A_{ij})\}$$

$$C(A_{ij}) = C(A_{ji})$$

$$C(A_{ij}) = C(A_{ij})$$

$$C(A_{ij}) = C(A_{i$$

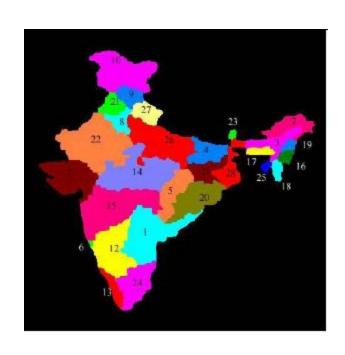
Matrices and Parameters

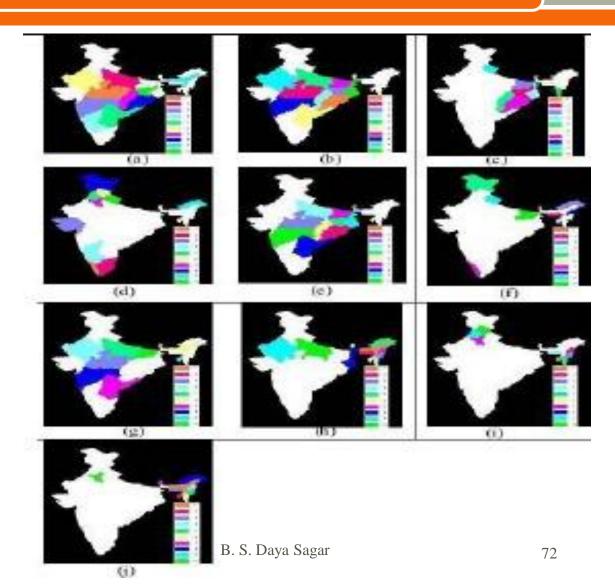
	A.	Az	Α,	A.	A,	A.	A,	A	A	A	A	A 12	A,	A	A 45	A.	A,	Α,	A.	Aze	A	Az	Az	Az	Az	Aze	Az	A.
Α,	8	8	0	0	26	0	8	0	0	0	8	130	0	8	75	0	8	0	0	91	0	8	0	41	0	0	0	0
A,	8	8	116	0	0	0	0	0	0	8	0	0	0	0	0	0	8	0	10	8	0	0	0	0	0	0	0	0
Α,	0	112	0	0	0	0	0	0	0	0	0	0	0	0	0	17	82	16	49	0	0	0	0	0	2	0	0	19
Α.	0	0	0	0	0	0	0	0	0	0	88	0	0	0	0	0	0	0	0	0	0	0	0	0	0	78	0	20
١,	26	0	0	0	0	0	0	0	0	0	35	0	0	79	52	0	0	0	0	126	0	0	0	0	0	10	0	-
١.	n	0	0	0	8	0	0	0	0	0	8	16	n	n	7	0	0	0	0	0	0	8	0	0	0	0	n	
١,	0	0	0	0	0	0	0	0	0	0	0	0	0	21	55	0	0	0	0	0	0	74	0	0	0	0	0	
١.	8	0	0	0	0	0	0	0	10	0	0	0	0	8	8	0	8	0	0	0	54	77	0	0	0	55	15	
١,	0	n	n	n	n	0	8	11	0	74	n	0	n	n	0	0	n	n	n	n	40	8	n	n	0	0	39	1
١.,	0	0	0	0	0	0	0	0	76	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	1
١,,	8	8	0	89	35	0	0	0	0	0	8	0	0	0	0	0	8	0	0	64	0	0	0	0	0	14	0	84
١,,,	128	0	0	0	8	17	8	0	8	0	n	0	51	0	100	0	8	0	0	0	0	8	0	0	0	0	0	-
١.,	0	0	0	0	0	0	0	0	0	0	0	49	0	0	0	0	0	0	0	0	n	0	0	0	0	0	0	1
١,,	0	0	0	0	78	0	20	0	0	0	0	0	0	0	140	0	8	0	0	0	0	163	0	0	0	202	0	1
A	75	8	0	0	53	9	56	0	8	0	0	101	0	139	8	0	8	0	0	0	0	0	0	0	0	0	0	
A	0	0	17	0	n	0	0	0	0	n	n	n	0	8	0	0	8	16	28	0	n	0	0	n	0	0	0	1
A 47	0	0	79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
A	0	0	16	0	0	0	0	0	8	0	0	0	0	0	0	17	8	0	0	0	0	8	0	0	15	0	0	1
A .,	0	11	46	0	8	0	0	0	0	n	n	0	0	0	0	26	8	n	0	0	0	8	0	0	0	0	0	1
A ze	90	0	0	0	126	0	0	0	0	0	66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
A 24	0	0	0	0	0	0	-	54	41	12	0	0	0	0	0	0	8	0	0	0	0	12	0	0	0	0	0	2
Azz	n	8	0	0	8	0	75	80	8	0	0	0	0	166	0	0	8	0	0	8	12	8	0	0	0	26	0	-
120	0	n	0	n	n	n	0	n	n	'n	0	n	n	n	8	0	0	n	0	0	n	0	n	n	n	0	n	13
124	40	0	0	0	0	0	0	0	0	0	0	67	70	8	0	0	0	0	0	0	0	0	0	0	0	0	0	1
١,,,	8	8	2	0	8	0	8	0	8	0	0	8	0	8	8	0	8	16	8	8	0	8	8	0	8	8	0	1
124	0	0	0	78	8	0	0	54	0	0	14	0	0	204	8	0	8	0	0	0	0	26	0	0	0	0	70	1
127	0	0	0	0	0	0	0	15	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68	0	1
\ z.	0	8	19	21	8	0	8	13	8	0	86	8	0	8	8	0	0	0	8	21	0	8	12	0	8	00	6	

_1	Α,	A,	A,	A.	A,	Α.	A,	Α.	Α,	A	A.,	Aez	A	A	A.s	An	A,,	A	A	A	A	Azz	Azı	Aze	Azs	Azz	A	Aza
١,	0	0.79	0.79	0.68	0.94	0.29	0.81	0.75	0.79	0.91	0.69	0.43	0.55	0.88	0.93	0.59	0.57	0.54	0.58	0.63	0.76	0.98	0.63	0.75	0.49	0.95	0.75	0.78
١,	0.79	0	0.56	0.89	0.87	0.77	0.96	0.85	0.85	0.94	0.88	0.94	0.88	0.82	0.83	0.7	0.48	0.88	0.49	0.9	0.85	0.85	0.42	0.95	0.7	0.81	0.85	0.76
١,	0.79	0.56	0	0.83	0.83	0.76	0.97	0.84	0.84	0.92	0.83	0.94	0.88	0.8	0.83	0.3	0.22	0.57	0.22	0.92	0.84	0.85	0.25	0.98	0.31	0.87	0.82	0.67
١.	0.68	0.89	0.83	0	0.59	0.72	0.88	0.84	0.82	0.79	0.79	0.88	0.91	0.55	0.63	0.7	0.79	0.62	0.69	0.74	0.85	0.7	0.34	0.85	0.54	0.54	0.79	0.87
١,	0.94	0.87	0.83	0.59	0	0.69	0.81	0.7	0.62	0.91	0.86	0.98	0.86	0.51	0.43	0.84	0.86	0.78	0.82	0.56	0.71	0.52	0.51	0.93	0.73	0.96	0.67	0.9
١.	0.29	0.77	0.76	0.72	0.69	0	0.55	0.84	0.87	0.81	0.72	0.12	0.43	0.55	0.11	0.94	0.9	0.97	0.95	0.58	0.88	0.57	1	0.28	0.98	0.63	0.87	0.82
١,	0.81	0.96	0.97	0.88	0.81	0.55	0	0.77	0.83	0.98	0.85	0.87	0.96	0.7	0.66	0.81	0.84	0.79	0.82	0.99	0.78	0.6	0.72	0.94	0.78	0.9	0.68	0.83
١.	0.75	0.85	0.84	0.84	0.7	0.84	0.77	0	0.97	0.72	0.84	0.77	0.91	0.58	0.73	0.93	- 1	0.9	0.94	0.83	0.89	0.34	0.83	0.87	0.89	0.34	0.92	0.96
١,	0.79	0.85	0.84	0.82	0.62	0.87	0.83	0.97	0	0.55	0.96	0.8	0.93	0.72	0.78	0.91	0.52	0.89	0.92	0.86	0.97	0.53	0.81	0.89	0.87	0.46	0.94	0.97
۱.,	0.91	0.94	0.92	0.79	0.91	0.81	0.98	0.72	0.55	0	0.83	0.9	0.99	0.92	0.93	0.72	0.74	0.69	0.72	1	0.51	0.78	0.57	0.98	0.66	0.81	0.65	0.78
١,,	0.69	0.88	0.83	0.79	0.86	0.72	0.85	0.84	0.96	0.83	0	0.96	0.94	0.53	0.62	0.71	0.77	0.63	0.72	0.64	0.85	0.7	0.53	0.84	0.57	0.54	0.93	0.6
142	0.43	0.94	0.94	0.88	0.98	0.12	0.87	0.77	0.8	0.9	0.96	0	0.62	0.89	0.84	0.89	0.88	0.81	0.85	0.82	0.77	0.98	0.76	0.74	0.8	0.98	0.75	0.9
۱,,	0.55	0.88	0.88	0.91	0.86	0.43	0.96	0.91	0.93	0.99	0.94	0.62	0	0.93	0.85	0.96	0.97	0.91	0.94	0.83	0.91	0.86	0.81	0.38	0.9	0.9	0.9	0.9
١,,,	0.88	0.82	0.8	0.55	0.51	0.55	0.7	0.58	0.72	0.92	0.53	0.89	0.93	0	0.93	0.62	0.63	0.58	0.62	0.63	0.66	0.97	0.42	0.98	0.55	0.75	0.59	0.5
1 15	0.93	0.83	0.83	0.63	0.43	0.11	0.66	0.73	0.78	0.93	0.62	0.84	0.85	0.93	0	0.66	0.68	0.64	0.67	0.74	0.78	0.9	0.51	0.95	0.6	1	0.73	0.63
145	0.59	0.7	0.3	0.7	0.84	0.94	0.81	0.93	0.91	0.72	0.71	0.89	0.96	0.62	0.66	0	0.58	0.74	0.74	0.62	0.96	0.72	0.86	0.85	0.76	0.65	0.92	0.1
1,,,	0.72	0.48	0.22	0.79	0.86	0.9	0.84	- 1	0.52	0.74	0.77	0.88	0.97	0.63	0.68	0.58	0	0.93	0.64	0.6	0.99	0.72	0.47	0.77	0.86	0.67	0.98	0.8
١.,	0.54	0.88	0.57	0.62	0.78	0.97	0.79	0.9	0.89	0.69	0.63	0.81	0.91	0.58	0.64	0.74	0.93	0	0.75	0.53	0.91	0.67	0.88	0.82	0.75	0.59	0.86	0.6
١,,	0.58	0.49	0.22	0.69	0.82	0.95	0.82	0.94	0.92	0.72	0.72	0.85	0.94	0.62	0.67	0.74	0.64	0.75	0	0.61	0.94	0.7	0.84	0.85	0.87	0.65	0.89	0.72
120	0.63	0.9	0.92	0.74	0.56	0.58	0.99	0.83	0.86	- 1	0.64	0.82	0.83	0.63	0.74	0.62	0.6	0.53	0.61	0	0.85	0.8	0.59	0.92	0.46	0.79	0.81	0.86
12.	0.76	0.85	0.84	0.85	0.71	0.88	0.78	0.89	0.97	0.51	0.85	0.77	0.91	0.66	0.78	0.96	0.99	0.91	0.94	0.85	0	0.35	0.83	0.87	0.88	0.4	0.95	0.95
122	0.98	0.85	0.85	0.7	0.52	0.57	0.6	0.34	0.53	0.78	0.7	0.98	0.86	0.97	0.9	0.72	0.72	0.67	0.7	0.8	0.35	0	0.51	0.9	0.63	0.82	0.37	0.6
١,,,	0.63	0.42	0.25	0.34	0.51	1	0.72	0.83	0.81	0.57	0.53	0.76	0.81	0.42	0.51	0.86	0.47	0.88	0.84	0.59	0.83	0.51	0	0.76	0.95	0.37	0.79	0.1
tze	0.75	0.95	0.98	0.85	0.93	0.28	0.94	0.87	0.89	0.98	0.84	0.74	0.38	0.98	0.95	0.85	0.77	0.82	0.85	0.92	0.87	0.9	0.76	0	0.79	0.95	0.86	
	0.49	0.7	0.31	0.54	0.73	0.98	0.78	0.89	0.87	0.66	0.57	0.8	0.9	0.55	0.6	0.76	0.86	0.75	0.87	0.46	0.88	0.63	0.95	0.79	0	0.95	0.82	0.5
122	0.95	0.81	0.87	0.54	0.96	0.63	0.9	0.34	0.46	0.81	0.54	0.98	0.9	0.75	- 1	0.65	0.67	0.59	0.65	0.79	0.4	0.82	0.37	0.95	0.95	0	0.29	0.5
127	0.75	0.85	0.82	0.79	0.67	0.87	0.68	0.92	0.94	0.65	0.93	0.75	0.9	0.59	0.73	0.92	0.98	0.86	0.89	0.81	0.95	0.37	0.79	0.86	0.82	0.29	0	0.9
\za	0.79	0.76	0.67	0.87	0.91	0.82	0.83	0.96	0.97	0.78	0.64	0.95	0.91	0.56	0.63	0.5	0.85	0.63	0.72	0.86	0.95	0.69	0.17	- 1	0.51	0.58	0.95	

	Α,	Az	Α,	Α.	A,	A.	Α,	Α.	Α,	A	A	Atz	A 43	A 14	A ss	A 15	A	A.,	A	Aze	Azı	Azz	Azs	Aze	Azs	Azs	Azz	Azı
Α,	0	225	200	161	69	172	163	210	246	274	129	104	126	116	63	247	202	240	255	72	238	146	204	87	225	145	225	146
A,	178	8	20	135	189	351	342	289	269	255	137	283	302	213	242	54	62	73	39	139	301	282	125	253	74	175	248	105
Α,	158	36	0	115	168	329	320	269	248	229	115	261	280	191	220	50	41	53	54	119	288	260	104	232	54	165	219	88
Α.	110	120	95	0	55	215	207	154	134	125	39	159	209	78	106	147	57	135	150	69	164	147	70	197	120	51	107	45
Α,	65	165	140	94	0	159	152	140	214	284	63	103	160	48	53	187	147	180	195	28	168	85	134	149	165	85	155	87
Α.	50	278	250	155	110	0	72	179	217	244	155	8	43	87	12	297	257	290	305	122	207	116	224	57	275	130	194	197
Α,	132	355	330	234	188	130	0	107	143	169	233	105	173	90	65	381	331	367	383	201	135	45	302	162	352	140	148	276
Α.	158	245	225	130	98	213	82	0	37	64	129	175	255	54	123	277	227	265	280	125	28	27	200	243	249	35	45	172
Α,	195	228	208	110	133	250	119	36	0	29	124	213	293	93	160	259	205	247	261	153	29	50	180	280	230	42	30	154
A	248	278	249	158	185	303	173	89	53	0	175	266	346	145	215	301	251	288	304	206	67	99	228	336	273	95	80	196
A	89	120	95	31	54	215	199	154	129	146	0	156	188	75	104	147	57	135	158	39	164	145	74	168	119	58	105	42
A 42	45	265	245	180	105	68	121	228	265	294	149	0	79	134	61	177	247	285	300	117	261	164	222	69	269	174	244	192
A .,	69	265	245	230	138	99	166	279	315	342	199	49	0	185	111	279	246	273	289	138	306	214	272	19	258	223	293	193
A	102	260	239	142	95	157	129	93	129	157	142	119	200	0	70	290	240	277	294	109	119	69	210	188	262	65	108	184
A 45	68	298	265	168	124	108	99	168	284	231		51	130	75	0	315	265	298	318	135	198	184	237	119	289	119	183	210
A 44	145	38	15	103	157	317	309	258	236	216	184	199	269	179	209	0	29	20	19	108	273	254	91	219	34	155	209	77
A 47	115	38	9	72	127	287	278	228	106	186	74	218	238	150	179	50	0	39	53	78	233	219	62	188	25	124	179	47
A	129	64	30	84	148	299	289	239	219	200	85	232	249	160	190	27	42	8	44	89	249	230	74	284	20	135	198	59
A ,,	149	19	12	104	160	322	313	262	240	220	108	254	273	183	213	14	34	33	8	112	272	253	95	223	39	158	208	79
A ze	45	154	129	93	50	209	199	150	178	205	61	142	166	69	100	174	130	168	183	8	164	140	134	128	157	86	154	78
A 24	188	255	235	140	120	235	105	25	30	34	140	200	279	79	148	285	235	275	289	140	0	32	209	268	264	45	55	180
Azz	149	330	305	209	164	204	75	79	94	127	208	167	248	67	115	354	305	343	359	174	91	0	308	234	338	114	123	249
A 25	129	52	26	24	69	225	217	165	145	125	39	169	219	88	120	78	29	65	88	79	174	157	8	208	52	60	117	13
Aze	65	265	236	231	139	100	172	280	316	343	199	51	50	184	113	259	244	248	263	139	307	211	273	0	233	226	294	194
Azs	110	52	17	65	120	282	273	222	200	180	68	215	233	144	173	26	29	15	34	73	232	213	55	184	0	225	168	40
Aze	152	215	190	94	89	207	8	8	91	118	93	170		49	119	240		229	244	109	113	93		238	214	0	69	135
A 22	168	205	180	85	104	222	101	49	32	52	98	184	264	64	134	226	182	220	235	124	58	46	149	253	204	20	0	125
Az.	116	88	59	39	79	240	229	179	159	152	27	183	213	103		105	55	93	109	67	190	173	78	2000	78	78	132	0

Strategically significant state(s) w.r.t 10 parameters





III.II.II Directional Spatial Relationship

http://www.isibang.ac.in/~bsdsagar/AnimationOfDirectionalSpatialRelationship.wmv

Fig. 1. (A_1 , A_2 , A_3) three disjoint objects possessing different directional spatial relationship.

(a)	(b)	(c)
(d)	(e)	(f)
(g)	(h)	(i)

Fig. 5. Directional dilations on objects A by all nine origins. (a) A ⊕ B⁰,
(b) A ⊕ B¹, (c) A ⊕ B², (d) A ⊕ B³, (e) A ⊕ B⁴, (f) A ⊕ B⁵, (g) A ⊕ B⁶, (h) A ⊕ B⁷, (i) A ⊕ B⁸.

1	1	1	(1)	1	1	1	(1)	1
1	(1)	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
	(B^0)			(B^1)			(B^2)	
1	1	(1)	1	1	1	1	1	1
1	1	1	1	1	(1)	1	1	1
1	1	1	1	1	1	1	1	(1)
	(B^3)			(B^4))		(B^5)	
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	(1)	1	1
1	(1)	1	(1)	1	1	1	1	1
	(B^6)			(B^7)			(B^8)	

1	2	3	NW	N	NE		
8	0	4	W	C	E		
7	6	5	SW	S	SE		
	(a)			(b)		(c)	

Fig. 4 Shows (a) origins of structuring element, and their corresponding directions in (b) and color codes in (c).

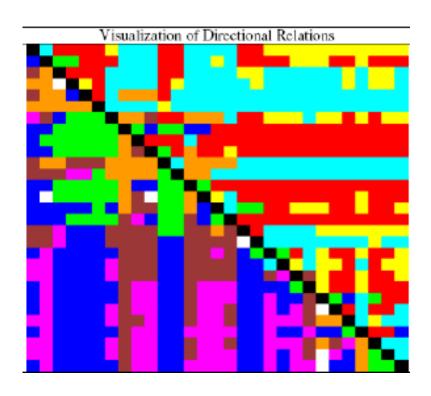
Fig. 3. Structuring element is shown with different possible origins. Except the first structuring element for which the origin is shown at the center, all other eight structuring elements are with other eight possible positions as origins. Those eight other structuring elements are asymmetric structuring elements as their transposes are not equivalents of their non-transposed

$$\Delta\!\left(\!A_i,A_j\right)\!=\!i\!\left|\min_{\forall i}\!\left\{n:A_j\subseteq\!\left(A_i\oplus n\, \overset{\,\,{}_\circ}{B}^i\right)\right\}\right|$$

TABLE 1. DISTANCES, UNIQUE ORIGINS AND DIRECTIONS

M	inimun Dista	n Dilat unces	ion	τ	nique	Origin	18	Di	rection	al Rela	tions		Visuali ectiona		
	$A_{\rm L}$	A_1	A_3		A_1	A_2	A_{j}		A_1	A_2	A_5		A_1	A_2	A_{j}
A_{\parallel}	0	53	50	A_1	0	2	1	$A_{\rm L}$	C	N	NW	$A_{\rm l}$			
A_2	46	0	36	A_2	6	0	7	A_2	S	С	SW	A_2			
A_3	52	49	0	A_3	5	3	0	A3	SE	NE	C	A_{3}			

III.II. Directional Spatial Relationship



III.II.III Point-to-Polygon Conversion

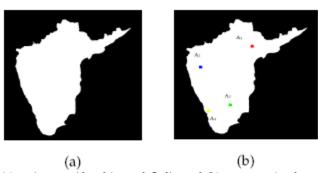
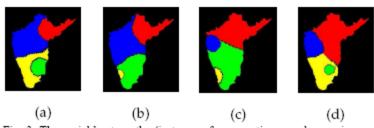


Fig. 2. (a) region considered is south India, and (b) gauge-station locations (A₁, A₂, A₃, A₄).



$$Z\left(A_{i}\right)=\bigcup_{n}\biggl(\mathcal{S}^{\stackrel{n}{\lambda_{i}}}\left(A_{i}\right)\cap A\biggr)\backslash\bigcup_{\forall j}\biggl(\mathcal{S}^{\stackrel{n}{\lambda_{j\neq i}}}\left(A_{j}\right)\cap A\biggr)$$

$$Z(A) = \left(\bigcup_{i} (Z(A_i))\right)^{c}$$

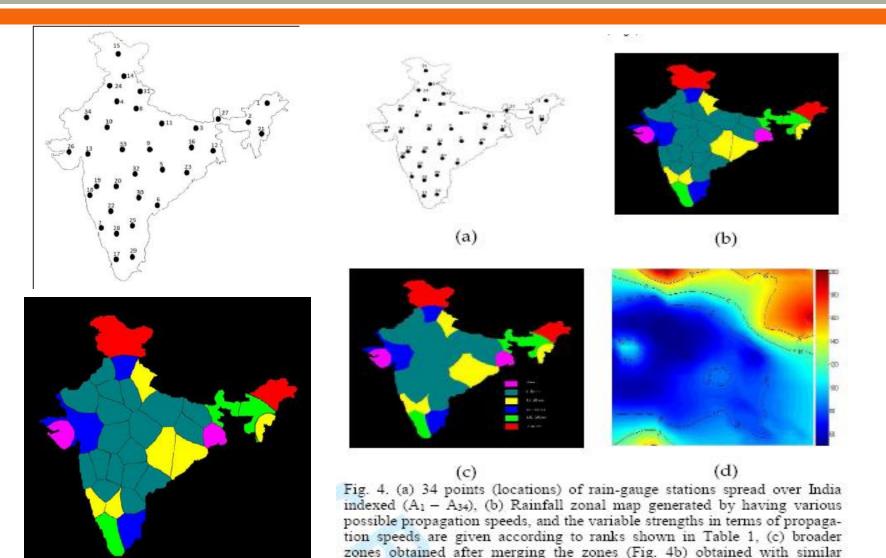
G)	(to)	σ.
© 0 0 1 5 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(2)	(b)	(1)
(d)	(e)	œ
(a)	(163)	(e)

Fig. 51. (a) original map with three points (shown with 1s) for (A_1) , (A_2) , and (A_3) , (b) f^b point (A) - (A), (c) union of f^b points, $\bigcup_{\mathcal{A}} A_1 - (A_1) \bigcup_{i \in A_1} A_i$, (d) first cycle of dilation of f^b point by B (Square in shape) with the propagation speed of

 $\lambda=1$, denoted by $\mathcal{S}^{\Pi}(A_j)$, (0) first cycle of dilation of f^0 point (A_j) by S with the propagation speed of $\lambda=3$, $\mathcal{S}^{\Pi}(A_j)$, (0) first cycle of dilation of f^0 point (A_j) by S with the propagation speed of $\lambda=2$, $\mathcal{S}^{\Pi}(A_j)$ c $\mathcal{S}^{\Pi}(A_j)$ of $\mathcal{S}^{\Pi}(A_j)$ is obtained (ii) obtained $\mathcal{S}^{\Pi}(A_j)$ of $\mathcal{S}^{\Pi}($

Point-to-Polygon Conversion

http://www.isibang.ac.in/~bsdsagar/AnimationOfPointPolygonConversion.wmv



propagation speeds, and (d) kriged map generated for 34 gauge station data.

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge organizers of IAMG conference Robert Marschallinger, Fritz Zobl, IAMG President Vera Pawlowsky-Glahn, Vice President Qiuming Cheng, Treasurer Gina Ross for arranging all that I have asked to reach Salzburg. I am most grateful to Qiuming Cheng, Chairman of GML selection committee, Katsuaki Koike and Jean Serra, members of the GML selection committee for choosing me as 2011 Georges Matheron Lecturer of IAMG. Support given by Bimal Roy and Sankar Pal (Current and Former Directors of Indian Statistical Institute) who created a great environment for academic research is gratefully acknowledged.

Grateful to collaborators, mentors, reviewers, examiners, friends, employers, well-wishers, and doctoral students—S. V. L. N. Rao, B. S. P. Rao, M. Venu, K. S. R. Murthy, Gandhi, Srinivas, Radhakrishnan, Lea Tien Tay, Chockalingam, Lim Sin Liang, Teo Lay Lian, Dinesh, Jean Serra, Gabor Korvin, Arthur Cracknell, Deekshatulu, Philippos Pomonis, Peter Atkinson, Hien-Teik Chuah, Laurent Najman, Jean Cousty, Christian Lantuejoul, Christer Kiselman, Alan Tan, Sankar Pal, Bimal Roy, Lim Hock, VC Koo, Rajesh, Ashok, Pratap, Rajashekhara, Saroj Meher, Alan Wilson, B. K. Sahu, K. V. Subbarao, Baldev Raj, C. Babu Rao, and several others.

From bottom of my heart, I express my gratitude to my wife Latha for her understanding, patience, and love. I feel relieved from stress when I listen to tales and stories that my children (Saketh and Sriniketh), learnt at school, narrate me.

Selected References

- Horton, R. E. (1945). Erosional development of stream and their drainage basin: hydrological approach to quantitative morphology, <u>Bulletin of the Geophysical Society of America</u>, 56, pp. 275-370.
- Langbein, W. B. (1947). Topographic characteristics of drainage basins, <u>U.S. Geological Survey Professional Paper</u>. 968-C, pp. 125-157.
- Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography: <u>Bulletin Geological Society of America</u>, v. 63, no. II, pp. 1117-1141.
- Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. <u>EOS Transactions of the American Geophysical Union</u>, 38(6):913–920.
- Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In Handbook of applied Hydrology (ed. V. T. Chow), New York, McGraw Hill Book Co., Section 4, pp. 4-39 4-76.
- Barbera, P. L. and Rosso, R. (1989). On the fractal dimension of stream networks, <u>Water Resources Research</u>, 25(4):735–741.
- Tarboton, D. G., Bras, R. L. and Rodrýguez-Iturbe, I. (1990). Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. <u>Water Resources Research</u>, 26(9):2243–4.
- Maritan, A., Coloairi, F., Flammini, A., Cieplak, M., and Banavar, J. R. (1996). Universality classes of optimal channel networks. Science, 272, 984.
- Maritan, A., R. Rigon, J. R. Banavar, and A. Rinaldo (2002). Network allometry, <u>Geophysical Research Letters</u>, 29(11), p. 1508-1511.
- Rodriguez-Iturbe, I. and Rinaldo, A. (1997). <u>Fractal River Basins: Chance and Self-organization</u>, Cambridge University Press, Cambridge.
- Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. Freeman, San Francisco.
- Turcotte, D. L. (1997). <u>Fractals in Geology and Geophysics</u>, Cambridge University Press, Cambridge.
- Matheron, G. (1975). Random Sets and Integral Geometry, John Wiley Hoboekn, New Jersey.
- Serra, J. (1982), <u>Image Analysis and Mathematical Morphology</u>, Academic Press, London.
- Peucker, T. K. and Douglas, D. H. (1975). Detection of surface-specific points by local parellel processing of discrete terrain elevation data, <u>Computer Vision, Graphics and Image Processing</u>, 4, p. 375-387.
- Veitzer, S. A. and Gupta, V. K., (2000). Random self-similar river networks and derivations of generalized Horton laws in terms of statistical simple scaling, <u>Water Resources Research</u>, Volume 36 (4), 1033-1048.

Selected References

- SAGAR, B. S. D.; VENU, M.; SRINIVAS, D. (2000): Morphological operators to extract channel networks from digital elevation models", International Journal of Remote Sensing," VOL. 21, 21-30.
- SAGAR, B. S. D.; MURTHY, M. B. R.; RAO, C. B.; RAJ, B. (2003): Morphological approach to extract ridge-valley connectivity networks from digital elevation models (DEMs), International Journal of Remote Sensing, VOL. 24, 573 581.
- TAY, L. T.; SAGAR, B. S. D.; CHUAH, H. T. (2005): Analysis of geophysical networks derived from multiscale digital elevation models: a morphological approach, IEEE Geoscience and Remote Sensing Letters, VOL. 2, 399-403.
- LIM, S. L.; KOO, V. C.; SAGAR, B. S. D. (2009): Computation of complexity measures of morphologically significant zones decomposed from binary fractal sets via multiscale convexity analysis, *Chaos, Solitons & Fractals*, VOL. 41, 1253–1262.
- LIM, S. L.; SAGAR, B. S. D. (2007): Cloud field segmentation via multiscale convexity analysis, *Journal Geophysical Research-Atmospheres*, VOL. 113, D13208, doi:10.1029/2007JD009369.
- SAGAR, B. S. D. (1996): Fractal relations of a morphological skeleton, Chaos, Solitons & Fractals, VOL. 7, 1871-1879.
- SAGAR, B. S. D.; TIEN, T. L. (2004): Allometric power-law relationships in a Hortonian Fractal DEM, Geophysical Research Letters, VOL. 31, L06501.
- TAY, L. T.; SAGAR, B. S. D.; CHUAH, H. T. (2006): Allometric relationships between travel-time channel networks, convex hulls, and convexity measures, Water Resources Research, VOL. 46, W06502.
- SAGAR, B. S. D. (2007): Universal scaling laws in surface water bodies and their zones of influence, Water Resources Research, VOL. 43, W02416.
- SAGAR, B. S. D.; CHOCKALINGAM, L. (2004): Fractal dimension of non-network space of a catchment basin, Geophysical Research Letters, VOL. 31, L12502.
- CHOCKALINGAM, L.; SAGAR, B. S. D. (2005): Morphometry of networks and non-network spaces, Journal of Geophysical Research, VOL. 110, B08203.
- TAY, L. T.; SAGAR, B. S. D.; CHUAH, H. T. (2007): Granulometric analysis of basin-wise DEMs: a comparative study, International Journal of Remote Sensing, VOL. 28, 3363-3378.
- SAGAR, B. S. D.; SRINIVAS, D.; RAO, B. S. P. (2001): Fractal skeletal based channel networks in a triangular initiator basin, Fractals, VOL. 9, 429-437.
- SAGAR, B. S. D.; VENU, M.; GANDHI, G.; SRINIVAS, D. (1998): Morphological description and interrelationship between force and structure: a scope to geomorphic evolution process modelling, International Journal of Remote Sensing, VOL. 19, 1341-1358.

Selected References

- SAGAR, B. S. D. (2005): Discrete simulations of spatio-temporal dynamics of small water bodies under varied streamflow discharges, Nonlinear Processes in Geophysics, VOL. 12, 31-40, 2005.
- SAGAR, B. S. D. (2010): Visualization of spatiotemporal behavior of discrete maps via generation of recursive median elements, IEEE Transactions on Pattern Analysis and Machine Intelligence, VOL. 32, 378-384.
- RAJASHEKHARA, H. M.; PRATAP VARDHAN; SAGAR, B. S. D. (2011): Generation of Zonal Map from Point Data via Weighted Skeletonization by Influence Zone, *IEEE Geoscience and Remote Sensing Letters* (Revised version under review).
- SAGAR, B. S. D.; PRATAP VARDHAN; DE, D. (2011): Recognition and visualization of strategically significant spatial sets via morphological analysis, *Computers in Environment and Urban Systems*, (Revised version under review).
- PRATAP VARDHAN; SAGAR, B. S. D. (2011): Determining directional spatial relationship via origin-specific dilation-distances, IEEE Transactions on Geoscience and Remote Sensing (Under Review).

Thank You

