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§ WHAT IS METASTABILITY?

Metastability is the phenomenon where a system, under
the influence of a stochastic dynamics, explores its state
space on different time scales.

• Fast time scale:
transitions within a single subregion.

• Slow time scale:
transitions between different subregions.



§ WHY IS METASTABILITY IMPORTANT?

Metastability is universal: it is encountered in a very wide

variety of stochastic systems.

The mathematical challenge is to propose computable

models and analyse metastability in quantitative terms.

MONOGRAPHS:

Olivieri &Vares 2005

Bovier & den Hollander 2015



§ METASTABILITY IN STATISTICAL PHYSICS

Metastability is the dynamical manifestation of a first-order

phase transition. An example is condensation:

When a vapour is cooled down, it persists for a
very long time in a metastable vapour state,
before transiting to a stable liquid state under
the influence of random fluctuations.

The crossover occurs after the system manages to create

a critical droplet of liquid inside the vapour, which once

present grows and invades the whole system.

While in the metastable vapour state, the system makes

many unsuccessful attempts to form a critical droplet.
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Particle systems in the continuum are particularly difficult

to analyse, but they give rise to new phenomena. A rig-

orous proof of the presence of a phase transition has been

achieved for very few models only.

In this talk we focus on the Widom-Rowlinson

model of interacting disks.

In this model, the interactions are purely geometric, which

makes it more amenable to a detailed analysis.

The results described in the sequel are joint work with:

S. Jansen (Bochum)
R. Kotecký (Prague & Warwick)
E. Pulvirenti (Leiden)



§ THE STATIC WIDOM-ROWLINSON MODEL

Let Λ ⊂ R2 be a finite torus. The set of finite particle
configurations in Λ is

Ω = {ω ⊂ Λ: N(ω) ∈ N0}, N(ω) = cardinality of ω.

disks of radius 2 around ω



The grand-canonical Gibbs measure is

µ(dω) =
1

Ξ
zN(ω) e−βH(ω)Q(dω),

where

– Q is the Poisson point process with intensity 1,
– z ∈ (0,∞) is the chemical activity,
– β ∈ (0,∞) is the inverse temperature,
– Ξ is the normalising partition function,

H is the interaction Hamiltonian given by

H(ω) = −
∑
x,y∈ω
x<y

|B2(x) ∩B2(y)|,

i.e., minus the sum of the pairwise overlaps of the 2-disks

around ω.



For β > βc a phase transition occurs at

z = zc(β) = β e−4πβ

in the thermodynamic limit, i.e., Λ → R2. No closed form

expression is known for βc.
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Ruelle 1971

Chayes, Chayes & Kotecký 1995



The one-species model can be seen as the projection of a

two-species model with hard-core repulsion:

disks of radius 1 around ωred and ωblue



§ THE DYNAMIC WIDOM-ROWLINSON MODEL

The particle configuration evolves as a continuous-time

Markov process (ωt)t≥0 with state space Ω and generator

(Lf)(ω) =
∫

Λ
dx b(x, ω) [f(ω ∪ x)− f(ω)]

+
∑
x∈ω

d(x, ω) [f(ω\x)− f(ω)],

i.e., particles are born at rate b and die at rate d given by

b(x, ω) = z e−β[H(ω∪x)−H(ω)], x /∈ ω,
d(x, ω) = 1, x ∈ ω.

The grand-canonical Gibbs measure is the unique reversible

equilibrium of this stochastic dynamics.



KEY QUESTION:

Let � and � denote the set of configurations where Λ is
empty, respectively, full.

Arrhenius

• Start with Λ empty, i.e., ω0 = �.
[preparation in vapour state]

• Choose z = κzc(β), κ ∈ (1,∞).
[reservoir is super-saturated vapour]

• Wait for the first time τ� when the system fills Λ.
[condensation to liquid state]

What can we say about the law of τ� in the limit as β →∞
for fixed Λ and κ?



§ THREE THEOREMS

For R ∈ [2,∞), let

Uκ(R) = πR2 − κπ(R− 2)2, Rc(κ) =
2κ

κ− 1
.

R2 Rc(κ)

Uκ(R)

κ1

Rc(κ)

2



A droplet of radius R filled with 2-disks: � β disks

in the interior, � β1/3 disks on the boundary



THEOREM 1 [Arrhenius formula]

For every κ ∈ (1,∞),

E�(τ�) = exp
[
β U(κ)− β1/3 S(κ) +O(logβ)

]
, β →∞,

where

U(κ) = Uκ(Rc(κ)) =
4πκ

κ− 1

and S(κ) is given by an intricate variational formula that

involves a large deviation rate function for the positions of

the particles near the boundary of the critical droplet.



Plots of the key quantities in the Arrhenius formula:
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• U(κ) is the energy of the critical droplet.

• S(κ) is the entropy associated with the

surface fluctuations of the critical droplet.



THEOREM 2 [Exponential law]

For every κ ∈ (1,∞),

lim
β→∞

P�
(
τ�/E�(τ�) > t

)
= e−t ∀ t ≥ 0.

The exponential law is typical for metastable

crossover times: the critical droplet appears after

many unsuccessful attempts.



For δ > 0, let

Cδ(κ) =
{
ω ∈ Ω: ∃x ∈ Λ such that

BRc(κ)−δ(x) ⊂ halo(ω) ⊂ BRc(κ)+δ(x)
}
.

THEOREM 3 [Critical droplet]

For every κ ∈ (1,∞),

lim
β→∞

P�
(
τCδ(β)(κ) < τ� | τ� > τ�

)
= 1

whenever

lim
β→∞

δ(β) = 0, lim
β→∞

β2/3δ(β) =∞.



§ HEURISTICS

• Since particles have a tendency to stick together, they
form some sort of droplet.

• Inside the droplet, particles are distributed according
to a Poisson process with intensity κβ � 1.

• Near the perimeter of the droplet, particles are born at
a rate that depends on how much they stick out.

• For R < Rc(κ) the droplet tends to shrink, while for
R > Rc(κ) the droplet tends to grow. The curvature
of the droplet determines which of the two prevails.



A droplet with a rough boundary: energy controlled by the

interior, entropy controlled by the boundary.



§ POTENTIAL-THEORETIC APPROACH
TO METASTABILITY

Bovier & den Hollander 2015

With the help of potential theory, the problem of how to
understand metastability of Markov processes translates
into the study of capacities in electric networks.

The key link between the average metastable crossover
time and capacity is the relation

E�(τ�) = [1 + o(1)]
µ(�)

cap(�,�)
, β →∞.



The capacity between � and � satisfies the Dirichlet prin-

ciple

cap(�,�) = inf
f : Ω→[0,1]
f |�=1, f |�=0

E(f, f),

Dirichletwhere

E(f, f) =
∫

Ω
f(ω)(−Lf)(ω)µ(dω)

=
1

Ξ

∫
Ω
Q(dω)

∫
Λ

dx zN(ω∪x) e−βH(ω∪x)
[
f(ω ∪ x)− f(ω)

]2
.



The estimation of capacity proceeds via physical insight:

• Upper bound: Estimate cap(�,�) ≤ E(f, f) for a clev-

erly chosen test function f that jumps from 1 to 0 in

the vicinity of the critical droplet.

• Lower bound: Restrict
∫
Ω Q(dω) to those configura-

tions ω that are in the vicinity of the critical droplet in

order to get a reduced variational formula.

The details of the computation are rather delicate

and need to be precise enough in order to produce

the entropy factor in the Arrhenius formula.



§ CONCLUSION

We have obtained a detailed description of metastability

for a model of interacting particles in the continuum.

The Arrhenius formula for the average of the

condensation time involves both the energy

and the entropy of the critical droplet.



There are still many challenges in understanding

metastability of interacting particle systems.


