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PART I

Basic theory



§ BACKGROUND

Large deviation theory is the study of unlikely events. Since

such events are always realised

in the least unlikely of all the unlikely ways

they can be captured with the help of variational principles.

This gives the theory a particularly elegant structure.

Large deviation theory originated in statistical physics and

via insurance and finance mathematics reached probability

theory and statistics. It can now be found in almost any

scientific discipline.



A classical setting for large deviations is the following. Let

(Xi)i∈N be i.i.d. R-valued random variables with

E(X1) = µ ∈ R, Var(X1) = σ2 ∈ (0,∞).

Let

X̄n = n−1(X1 + · · ·+Xn)

be the empirical average of the n-sample. Then, as n→∞,

LLN: X̄n → µ P-a.s.

CLT:
√
n(X̄n − µ)→ σN(0,1) in P-probability,

where N(0,1) is the standard normal random variable.



Under the assumption that E(eλX1) <∞ for all λ ∈ R, large

deviation theory says that, as n→∞,

P(X̄n ≈ ν) = e−nI(ν)+o(n),

where ≈ means close in a proper sense, and

ν 7→ I(ν)

is a rate function that achieves a unique zero at ν = µ.

Large deviations away from the mean are exponentially

costly at a rate that depends on the size of the deviation.

The rate function captures the cost of the large deviations.



§ LARGE DEVIATION PRINCIPLE

DEFINITION (Large Deviation Principle)

A family of probability measures (µε)ε>0 on a Polish space

X is said to satisfy the large deviation principle (LDP) with

rate function I : X → [0,∞] if

(i) I has compact level sets and is not identically infinite,

(ii) lim infε↓0 ε logµε(O) ≥ −I(O) for all O ⊆ X open,

(iii) lim supε↓0 ε logµε(C) ≤ −I(C) for all C ⊆ X closed,

where I(S) = infx∈S I(x), S ⊆ X .



Informally, the LDP says that if Bδ(x) is the open ball of

radius δ > 0 centred at x ∈ X , then

µε(Bδ(x)) = e−[1+o(1)] I(x)/ε

when ε ↓ 0 followed by δ ↓ 0.

X
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Paradigmatic picture of a rate function with a unique zero.



§ UNIQUENESS OF THE RATE FUNCTION

Suppose that I, J are both rate functions for the same

(µε)ε>0. Pick x ∈ X and consider the open balls BN =

B1/N(x), N ∈ N. Then

− I(x) ≤ −I(BN+1) ≤ lim inf
ε↓0

ε logµε(BN+1)

≤ lim sup
ε↓0

ε logµε(cl(BN+1)) ≤ −J(cl(BN+1) ≤ −J(BN).

Since J has compact level sets it is lower semi-continuous,

so that limN→∞ J(BN) = J(x). Hence I(x) ≥ J(x).

By interchanging I and J we get the opposite bound and

hence I(x) = J(x). Since x ∈ X is arbitrary, this proves

that I = J.



§ WEAK LDP

If the level sets of I are assumed to be closed rather than

compact, and the inequality for the limpsup is assumed to

hold for compact sets rather than closed sets, then it is

said that the weak LDP holds.

Strengthening a weak LDP to an LDP requires establishing

exponential tightness, i.e., proving that for every N < ∞
there exists a compact set KN ⊆ X such that

lim sup
ε↓0

ε logµε([KN ]c) ≤ −N.



§ DUALITY

The LDP is the workhorse for the computation of averages

of exponential functionals.

THEOREM (Varadhan’s Lemma)

If (µε)ε>0 satisfies the LDP on X with rate function I, then

lim
ε↓0

ε log
∫
X

eF (x)/ε µε(dx) = ΛF , ∀F ∈ Cb(X ),

where Cb(X ) is the space of bounded continuous functions

on X , and

ΛF = sup
x∈X

[F (x)− I(x)].



Varadhan’s Lemma can be easily extended to functions F

that are unbounded and discontinuous, provided certain

tail estimates on µε are available.

Varadhan’s Lemma has the following inverse.

THEOREM (Bryc’s Lemma)

Suppose that (µε)ε>0 is exponentially tight and the limit in

Varadhan’s Lemma exists for all F ∈ Cb(X ). Then (µε)ε≥0

satisfies the LDP with rate function I given by

I(x) = sup
F∈Cb(X )

[F (x)− ΛF ], x ∈ X .



§ FORWARD PRINCIPLES

There are several ways to generate one LDP from another.

We give three examples.

THEOREM (Contraction Principle)

Let (µε)ε>0 satisfy the LDP on X with rate function I. Let

Y be a second Polish space, and T : X → Y a continuous

map from X to Y. Then the family of probability measures

(νε)ε>0 on Y defined by

ν = µ ◦ T−1

satisfies the LDP on Y with rate function J given by

J(y) = inf
x∈X

T (x)=y

I(x), y ∈ Y.



X Y

Illustration of the contraction principle.



§ PROOF OF CONTRACTION PRINCIPLE

Since T is continuous, T−1 maps open sets into open sets

and closed sets into closed sets. Pick C ⊂ Y closed and

write

lim sup
ε↓0

ε log νε(C) = lim sup
ε↓0

ε logµε(T
−1(C))

≤ −I(T−1(C)) = − inf
x∈T−1(C)

I(x) = − inf
y∈C

J(y) = −J(C).

A similar argument applies for O ⊂ Y open. Since the rate

function is unique, this identifies J as the rate function.

Moreover, J inherits compact levels set from I because T

is continuous.



THEOREM (Exponential Tilting)

Let (µε)ε>0 satisfy the LDP on X with rate function I, and

let F ∈ Cb(X ). Then the family of probability measures

(νε)ε>0 on X defined by

νε(dx) =
1

Nε
eF (x)/ε µε(dx), Nε =

∫
X

eF (x)/εµε(dx),

satisfies the LDP on X with rate function J given by

J(x) = ΛF − [F (x)− I(x)], x ∈ X .



THEOREM (Dawson-Gärtner projective limit LDP)

Let (µε)e>0 be a family of probability measures on X . Let

(πN)N∈N be a nested family of projections acting on X
such that

⋃
N∈N π

N is the identity. Let

XN = πNX , µNε = µε ◦ (πN)−1, N ∈ N.

If, for each N ∈ N, the family (µNε )ε>0 satisfies the LDP on

XN with rate function IN , then (µε)ε>0 satisfies the LDP

on X with rate function I given by

I(x) = sup
N∈N

IN(πNx), x ∈ X .



Since

IN(y) = inf
{x∈X : πN(x)=y}

I(x), y ∈ XN ,

the supremum defining I is non-decreasing in N because

the projections are nested.

The projective limit LDP can be used to extend a suitably

nested sequence of LDP’s on finite-dimensional spaces to

an LDP on an infinite-dimensional space.



§ SPECIAL STRUCTURES

LDPs can be formulated on general topological spaces X ,

although this comes at the cost of more technicalities.

Conversely, more can be said when X has more structure.

For instance, if X is a vector space, then the rate function

can be identified as the Legendre transform of a generalised

cumulant generating function. When X = Rd, we have the

following.



THEOREM (Gärtner-Ellis Theorem)

Let (µε)ε>0 be a family of probability measures on Rd, d ≥
1, with the following properties:

(i) φ(u) = limε↓0 ε log
∫
Rd e〈u,x〉/ε µε(dx) exists in R for all

u ∈ Rd, where 〈·, ·〉 denotes the standard inner product on

Rd.
(ii) u 7→ φ(u) is differentiable on Rd.

Then (µε)ε>0 satisfies the LDP on Rd with a convex rate

function φ∗ given by

φ∗(x) = sup
u∈Rd

[
〈u, x〉 − φ(u)

]
, x ∈ Rd.



There is a version of the Gärtner-Ellis Theorem where the

domain of φ is not all of Rd, in which case some additional

assumptions must be made.

Two special cases deserve to be mentioned:

• Cramér’s Theorem

• Sanov’s Theorem

Let (Xi)i∈N be i.i.d. R-valued random variables with law ρ.

Let M1(R) denote the space of probability measures on R
(which is a subset of the vector space of signed measures

on R).



Cramér’s Theorem:

Let µn denote the law of the empirical average

X̄n = n−1
n∑
i=1

Xi ∈ R.

If

M(λ) =
∫
R

eλxρ(dx) <∞ ∀ λ ∈ R,

then (µn)n∈N satisfies the LDP on R with rate ε = n−1 and

rate function

I(x) = sup
λ∈R

[λx− logM(λ)], x ∈ R.



Examples:

1. ρ = N(0,1):

M(λ) = eλ
2/2, λ ∈ R,

I(x) = 1
2x

2, x ∈ R.

2. ρ = 1
2(δ−1 + δ+1):

M(λ) = cosh(λ), λ ∈ R,
I(x) = 1

2(1 + x) log(1 + x) + 1
2(1− x) log(1− x), x ∈ [−1,+1].

3. ρ = POISSON(m):

M(λ) = exp[m(eλ − 1)], λ ∈ R,
I(x) = x log(x/m)− (x−m), x ∈ [0,∞).



Sanov’s Theorem:

Let µn denote the law of the empirical distribution

Ln = n−1
n∑
i=1

δXi ∈M1(R).

Then (µn)n∈N satisfies the LDP on M1(R) with rate ε =

n−1 and rate function

I(ν) = H(ν | ρ) =
∫
R
ν(dx) log

[
dν

dρ

]
(x), ν ∈M1(R),

with the right-hand side infinite when ν is not absolutely

continuous with respect to ρ.

H(ν | ρ) is called the relative entropy of ν with respect to

ρ.



With the help of the Dawson-Gärtner projective limit LDP

an infinite-dimensional version of Sanov’s theorem can be

derived. The key object of interest is the empirical process

Rn = n−1
n∑
i=1

δθi(X1,...,Xn)per ∈M∗1(RN),

where

(X1, . . . , Xn)per = X1, . . . , Xn︸ ︷︷ ︸, X1, . . . , Xn︸ ︷︷ ︸, . . .
is the periodic extension of the first n elements of (Xi)i∈N,

θ is the left-shift acting on RN, and M∗1(RN) is the space

of θ-invariant probability measures on RN.



Sanov’s Theorem at the process level:

Let µn denote the law of the empirical process Rn. Then

(µn)n∈N satisfies the LDP on M∗1(RN) with rate ε = n−1

and rate function

I(Q) = H(Q | ρ⊗N) = lim
N→∞

N−1H(πNQ | ρN),

where πNQ is the projection of Q onto the first N coordi-

nates.

H(Q | ρ⊗N) is called the specific relative entropy of Q with

respect to ρ⊗N.



The rate functions

x 7→ I(x), ν 7→ I(ν), Q 7→ I(Q)

are all convex. The first two are strictly convex, the third is

affine. There is a deep connection with information theory.

It is possible to generalize the three LDPs to sequences

(Xi)i∈N that are not i.i.d., for instance, Markov sequences.

However, some mixing properties are needed to ensure

proper rate functions. In general these rate functions are

no longer convex.
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PART II

An application



§ MOTIVATION

Let

S = (Sk)k∈N0
, S′ = (S′k)k∈N0

,

be two independent random walks on Zd, d ≥ 1, starting

at 0, with a symmetric transition kernel p(·, ·). Let

V =
∑
k∈N0

1{Sk=S′k}

denote their collision local time. Then

P(V <∞) = 1

if and only if p(·, ·) is transient.



Counting collisions of two random walks.



Define

z1 = sup
{
z ≥ 0: E

[
zV | S

]
<∞ S-a.s.

}
,

z2 = sup
{
z ≥ 0: E

[
zV

]
<∞

}
.

It is obvious that z2 ≤ z1. For recurrent random walk

z1 = z2 = 1.

QUESTION Under what conditions on p(·, ·) is it the case

that z2 < z1?

Suppose that n 7→ p2n(0,0) is regularly varying at infinity.

THEOREM z2 < z1 when
∑
n∈N n p

2n(0,0) <∞.

CONJECTURE z2 < z1 if and only if
∑
n∈N p

2n(0,0) <∞.



The presence of the gap z2 < z1 implies the existence of

an intermediate phase for the long-time behavior of

• branching and migrating populations
• linearly interacting diffusions
• copolymers near selective interfaces.

The reason is that certain key quantities for these systems,

such as mean growth rate, mean value in equilibrium or free

energy per monomer, have a

random walk representation!



§ LETTERS, WORDS AND SENTENCES

Joint work with:

Matthias Birkner (Mainz), Andreas Greven (Erlangen)

Let

• X = (Xk)k∈N be an i.i.d. sequence of letters drawn

from a countable alphabet E according to a law ν.

• τ = (τi)i∈N be an i.i.d. sequence of renewal times drawn

from N according to a law ρ.

Put T0 = 0, and for i ∈ N define

Ti = τ1 + · · ·+ τi,

Y (i) = (XTi−1+1, . . . , XTi).



τ1
τ2

τ3
τ4

τ5

T1 T2 T3 T4 T5

Y (1) Y (2) Y (3) Y (4) Y (5)
X

Cutting words from a letter sequence according to a renewal process.

Y = (Y (i))i∈N is an i.i.d. sequence of words taking values

in the sentence space ẼN, where Ẽ = ∪n∈NEn is the word

space.



Our key object of interest will be the empirical process of

N-tuples of words

RN =
1

N

N∑
i=1

δ
θ̃i(Y (1),...,Y (N))per ∈M∗1(ẼN),

where per denotes periodic extension and θ̃ is the left-shift

acting on ẼN.

By the ergodic theorem, we have

weak− lim
N→∞

RN = q∗⊗N P− a.s.

with

q∗((x1, . . . , xn)) = ρ(n)ν(x1) · · · ν(xn),

n ∈ N, x1, . . . , xn ∈ E.



THEOREM (annealed LDP)

The family of probability distributions P(RN ∈ · ), N ∈ N,

satisfies the LDP on M∗1(ẼN) with rate N and with rate

function

Q 7→ H(Q | q∗⊗N),

the specific relative entropy of Q w.r.t. q∗⊗N. This rate

function is affine, has compact level sets and has a unique

zero at Q = q∗⊗N.



§ CONDITIONING ON THE LETTER SEQUENCE

Let κ : ẼN → EN denote the concatenation map that glues

a sequence of words into a sequence of letters. For Q ∈
M∗1(ẼN) such that

mQ = EQ[τ1] <∞,

define ΨQ ∈M∗1(EN) as

ΨQ(·) =
1

mQ
EQ

τ1−1∑
k=0

δθkκ(Y )(·)

 ,

where θ is the left-shift acting on EN.



THEOREM (quenched LDP)

Suppose that

lim
n→∞

log ρ(n)

logn
= −α, α ∈ (1,∞).

Then, for ν⊗N–a.s. all X, the family of conditional probabil-

ity distributions P(RN ∈ · | X), N ∈ N, satisfies the LDP on

M∗1(ẼN) with rate N and with deterministic rate function

Q 7→ I(Q) = H(Q | q∗⊗N) + (α− 1)mQH(ΨQ | ν⊗N)

when mQ < ∞, and I(Q) given by a truncation approxi-

mation when mQ = ∞. This rate function is affine, has

compact level sets and has a unique zero at Q = q∗⊗N.



HEURISTICS

Once X is fixed, the renewal process has to look for rare

stretches in X on which it can realize RN ≈ Q via a large

number of small renewals. These stretches are reached via

a small number of large renewals.

X

filling_subsentences

atypical_medium

good_subsentences

Looking for good subsentences and filling subsentences.



The quenched rate function is the sum of the annealed

rate function and an entropy term involving randomized

concatenation and the tail exponent of the renewal times.

The proof of the quenched LDP is complicated and re-

quires

ergodic theory, combinatorics, large deviation
theory, entropy estimates, compactification,
mollification, projective limits, ...



§ BACK TO COLLISION LOCAL TIME

Write

zV = ((z − 1) + 1)V

= 1 +
V∑

N=1

(z − 1)N
V (V − 1) · · · (V −N + 1)

N !

= 1 +
V∑

N=1

(z − 1)N
∑

0<j1<···<jN<∞
1{Sj1=S′j1

,...,SjN=S′jN
} .

Hence

E
[
zV | S

]
= 1 +

∞∑
N=1

(z − 1)NF (1)
N (X),

E
[
zV

]
= 1 +

∞∑
N=1

(z − 1)NF (2)
N ,



with

F
(1)
N (X) =

∑
0<j1<···<jN<∞

P
(
Sj1 = S′j1, . . . , SjN = S′jN | X

)
,

F
(2)
N = E

[
F

(1)
N (X)

]
,

where X = (Xk)k∈N denotes the i.i.d. sequence of incre-

ments of S.



We may write this out further as follows:

F
(1)
N (X) =

∑
0<j1<···<jN<∞

N∏
i=1

pji−ji−1

0,
ji∑

k=ji−1+1

Xk


=

∑
0<j1<···<jN<∞

N∏
i=1

ρ(ji − ji−1)

× exp

 N∑
i=1

log

pji−ji−1(0,
∑ji
k=ji−1+1Xk)

ρ(ji − ji−1)




= E

exp

 N∑
i=1

log f(Yi)

∣∣∣∣∣∣X


= E
[
exp

(
N
∫
Ẽ

(π1RN)(dy) log f(y)
)∣∣∣∣X] ,



where

f((x1, . . . , xn)) =
pn(0, x1 + · · ·+ xn)

ρ(n)
,

n ∈ N, x1, . . . , xn ∈ E = Zd,

and π1RN is the projection of RN onto the first word.
Similarly, we have

F
(2)
N = E

[
exp

(
N
∫
Ẽ

(π1RN)(dy) log f(y)
)]
.

By picking

ρ(n) =
pn(0,0)

G(0,0)− 1
, n ∈ N,

with G(0,0) the Green function at the origin, we obtain
that f is bounded and continuous.



Consequently, the quenched LDP and the annealed LDP

can be combined with Varadhan’s Lemma to obtain the

variational formulas (zi = 1 + e−ri, i = 1,2)

r1 = lim
N→∞

1

N
logF (1)

N (X)

= sup
Q

{∫
Ẽ

(π1Q)(dy) log f(y)−H(Q | q∗⊗N)

−(α− 1)mQH(ΨQ | ν⊗N)
}

a.s.,

r2 = lim
N→∞

1

N
logF (2)

N

= sup
Q

{∫
Ẽ

(π1Q)(dy) log f(y)−H(Q | q∗⊗N)
}
.



To prove that z2 < z1 it suffices to show that r1 < r2. The
key to this gap are the following two facts:

• The variational formula for r2 has a unique maximizer
Q̄ = q̄⊗N given by

q̄((x1, . . . , xn)) =
pn(0, x1 + · · ·+ xn)

G(0,0)− 1

n∏
k=1

p(0, xk),

n ∈ N, x1, . . . , xn ∈ E = Zd.

• If mQ̄ <∞, then ΨQ̄ 6= ν⊗N (here ν(·) = p(0, ·)).

It turns out that mQ̄ <∞ when∑
n∈N

n p2n(0,0) <∞.
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