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§ MOTIVATION

DNA and proteins are polyelectrolytes whose monomers are
in @ charged state that depends on the pH of the solution
in which they are immersed. The charges may fluctuate in
space and in time.

In this talk we consider a model of a charged polymer chain
introduced by Kantor & Kardar in 1991.

We focus on the annealed version of the model, which
turns out to exhibit a very rich scaling behavior.
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§ MODEL

1. Let S = (S))ien, be simple random walk on Z? starting
at 0. The path S models the configuration of the polymer
chain, i.e., S; is the location of monomer . We use the
letter P for probability with respect to S.

2. Let w = (w;)jen be i.i.d. random variables taking values
in R. The sequence w models the electric charges along
the polymer chain, i.e., w; is the charge of monomer ;.
We use the letter P for probability with respect to w, and
assume that

E(wl) = 0, Var(wl) = 1.



To allow for biased charges, we use a tilting parameter

5§ € R and write P for the i.i.d. law of w with marginal

€91 P(dwq)
M)

PO (dwq) = M(8) = E(e%%1).

W.l.0.g. we may take § € [0,00). Throughout the sequel
we assume that M () < oo for all § € [0, 0).

3. Let Il denote the set of nearest-neighbor paths on
7.4 starting at 0. Given n € N, we associate with each
(w,S) € RN x M an energy given by the Hamiltonian

H;';(S) = Z wiwj 1{52,:‘51],}.
1<i,j<n




4. Let B denote the inverse temperature. Throughout the
sequel the relevant space for the pair of parameters (6, 8)
IS the quadrant

Q = [0,00) x (0, 00).

5. Given (4§,8) € Q, the annealed polymer measure of
length n is the Gibbs measure 1@%5 defined as

9,0

dP 1 w

571 (CU,S) — TBG_’BHn(S), (CLJ,S) ~ RN X I_I,
d(P° x P) 7

where

2P = (B° x E) e PHA(5)]

is the annealed partition function of length n.



Literature: The charged polymer with binary disorder in-
terpolates between

simple random walk I}
self-avoiding walk B
weakly self-avoiding walk g3

0
= ) = o0
€ (0,00),6 = o0

Only very little mathematical literature is available on the
charged polymer. In what follows we focus on d =1 and
later comment on d > 2.
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PART I. general properties




KEY FORMULA:

For every n € N and (4,8) € Q,

Z5° M) =E [exp | > G} 3(tn())
_zUEZd

with
bn(z) = ) 1{S; ==}
1=1

the local time of simple random walk at site x up to time
n, and G(’;B(E) the free energy at a site that is visited ¢
times (defined below).



§ FREE ENERGY

1. Let Q(4,7) be the probability matrix defined by

{1{]':0}7 it @ = 0, j€ NO)
Q>i,7) = |

()BT fien e

which is the transition kernel of a critical Galton-VWatson
branching process with a geometric offspring distribution.

2. For (6,8) € Q, let G;B be the function defined by

¢
G5 3(0) = 109 E [6596—595], Q=Y w, £LeNg
k=1
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3. For (u,d,8) € [0,00) x Q, define the Ng x Ng matrix

. —p(i+j+1)+G% (41 . . .
As50,5) = e MUHITDFCE R+ 66 41 1.5), 4,5 € No.
4. Let Asg(u) be the spectral radius of A, 53. For every
(6,8) € Q, u+— Aspg(p) is continuous, strictly decreasing
and log-convex on [0, 00), and is analytic on (0, 00), with a
finite strictly negative right-slope at 0.

5. For (6,8) € Q, let u(4,B) be the unique solution of the
equation

Asg(p) =1
when it exists and u(4d,3) = O otherwise.



l0g As 5(1)

n(4, 8)




FREE
THEOREM 1 ENERGY

(1) For every (6,8) € Q, the annealed free energy per
monomer

F(5,8) = lim 1 log 7.2

exists, takes values in (—oo, 0], and satisfies the inequality
F(6,8) = f(6) = —log M(6) € (—o0,0].

(2) The excess free energy

F*(6,8) = F(5,8) — f(6)

is convex in (6,8) and has the spectral representation

F*(6,8) = n(4, B).



§ PHASE TRANSITION

The inequality F*(6,8) > 0 leads us to define two phases:
P> ={(5,8) € Q: F*(5,8) > 0},
P=={(5,8) € Q: F*(5,8) =0}.

Bc(6)
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phasetransition

THEOREM 2

(1) There exists a critical curve § — B:(6) such that

P> = {(5,5) €cQ:0<p< Bc(5)},
P~ = {(5,5) cQ: B> 60(5)}

(2) For every § € [0,00), Bc(8) is the unique solution of the
equation s 3g(0) = 1.

(3) 8 = Bc(6) is continuous, strictly increasing and convex
on [0,00), is analytic on (0,00), and satisfies 5.(0) = 0.

(4) (8,8) — F*(6,B) is analytic on P~.



5 LAWS OF LARGE NUMBERS

We proceed by stating a LLN for the empirical speed n—lsn
and the empirical charge n—1Q,,, where

n n
Sn — Z Xia Qn — Z wj.

Let

B={(B)€Q: 0<B<B)}, S=Q\B

The set B will be referred to as the ballistic phase, the
set § as the subballistic phase, for reasons that become
apparent in the next theorem.
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THEOREM 3

(1) For every (8,8) € Q there exists a v(§,8) € [0, 1] such
that

im IP’quB(‘n_lSn — (4, 5)‘ > €

where

>O7 (57/3)687

”(5’5){ —0, (5,8) €S

(2) For every (6,8) € B,

1 0
= |——IlogA ) :
v(4, 8) [ O a6 p=p(6,5)



THEOREM 4

(1) For every (6,8) € Q, there exists a p(d,3) € [0,00) such
that

Jim IP’%’B (‘n_lﬂn — p(5,6)‘ > e) =0 Ve> 0,
where

>0, (9,8) € B,

MM@{:Q(@me&

(2) For every (6,8) € B,

p(65,8) = (5, 5),



5 PHASE DIAGRAM

Picture of the ballistic phase B and the subballistic phase
S. The critical curve is part of B, which implies that the
phase transition is first order.
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Numerical plots of 8+ v(4,3) and B8+ p(d,8) for § = 1:
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§ LARGE DEVIATION PRINCIPLES

THEOREM 5

For every (6,8) € Q. Varadhan

(1) The sequence (n~1Sy),en conditionally on {Sn > 0},en
satisfies the LDP on [0,00) with rate function Igﬁ.

(2) The sequence (n~1Qp),cN satisfies the LDP on [0, co)
with rate function Igﬁ.

Pictures for (4,8) € int(B) and (4,8) € S are:
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§ CENTRAL LIMIT THEOREMS
THEOREM 6

For every (6,8) € int(B) the scaled quantities

Sn — nv(6, B) Qn —np(9, B)
ov(8,8)vn  op(8,8)vn

converge in distribution to the standard normal law with

1 _ _8_2[”0 (9)]
03(8,8) ~ 002 [y 56y
1 [ 02
= | a6
)
ACT NN G PP



Numerical plots of 8~ 02(6,8) and B+ o5(6,8) for § = 1:
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PART II: asymptotic properties




§ SCALING OF THE CRITICAL CURVE
THEOREM 7

(1) Asé | 0O,
Be(8) — 362 ~ —a*(36%)4/3,

where a* comes from a certain Sturm-Liouville operator.

(2) As § — oo,
)
56(5) Nf
with
T = sup{t >0: P(wy €tZ) = 1}



Either T' > 0 (lattice case) or T' = 0 (non-lattice case). If
T = 0 and wy has a bounded density with respect to the
ebesgue measure, then

1 62

Be(6) ~ Z@

Note that the scaling behavior of the critical curve is ano-
malous for small charge bias. This implies that the critical
curve is not analytic at the origin.

Note that the scaling is also delicate for large charge bias.
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§ CRITICAL SCALING OF THE EXCESS FREE ENERGY

The scaling behaviour of the excess free energy near the
critical curve fits with the phase transition being first order.

THEOREM 8

For every 6 € (0,00),

F*(6,8) ~ Ks[Bc(6) — Bl, B 1 Be(6),

for a certain explicit K5 € (0,00).



§ WEAK INTERACTION SCALING
THEOREM 9

(1) For every 6 € (0, 00),
F(8,8) ~ —AsB%/3,  v(5,8) ~ BsBL/3,

p(8,8) — ps ~ CsB2/3, B0,
for certain explicit Ag, Bg,Cs € (0,00), where ps = E°(wy).

(2) For every e > 0,

F((S?B)NBC((S)_B) 575\1/07
provided 352 — B < §4/3.



§ CONCLUSIONS

e [ he annealed charged polymer in d = 1 exhibits a very
rich scaling behaviour.

e [ he phase transition between the ballistic phase and
the subballistic phase is first order.

e [ he large deviation rate functions for the speed and
the charge exhibit linear pieces in both phases.

e | he limit of weak interaction is anomalous.



For d > 2 we expect a similar richness:

Quentin Berger, dH, Julien Poisat, work in progress

GEOMETRY







