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§ MOTIVATION

DNA and proteins are polyelectrolytes whose monomers are

in a charged state that depends on the pH of the solution

in which they are immersed. The charges may fluctuate in

space and in time.

In this talk we consider a model of a charged polymer chain

introduced by Kantor & Kardar in 1991.

We focus on the annealed version of the model, which

turns out to exhibit a very rich scaling behavior.
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§ MODEL

1. Let S = (Si)i∈N0
be simple random walk on Zd starting

at 0. The path S models the configuration of the polymer

chain, i.e., Si is the location of monomer i. We use the

letter P for probability with respect to S.

2. Let ω = (ωi)i∈N be i.i.d. random variables taking values

in R. The sequence ω models the electric charges along

the polymer chain, i.e., ωi is the charge of monomer i.

We use the letter P for probability with respect to ω, and

assume that

E(ω1) = 0, Var(ω1) = 1.



To allow for biased charges, we use a tilting parameter

δ ∈ R and write Pδ for the i.i.d. law of ω with marginal

Pδ(dω1) =
eδω1 P(dω1)

M(δ)
, M(δ) = E(eδω1).

W.l.o.g. we may take δ ∈ [0,∞). Throughout the sequel

we assume that M(δ) <∞ for all δ ∈ [0,∞).

3. Let Π denote the set of nearest-neighbor paths on

Zd starting at 0. Given n ∈ N, we associate with each

(ω, S) ∈ RN ×Π an energy given by the Hamiltonian

Hω
n(S) =

∑
1≤i,j≤n

ωiωj 1{Si=Sj}.



4. Let β denote the inverse temperature. Throughout the

sequel the relevant space for the pair of parameters (δ, β)

is the quadrant

Q = [0,∞)× (0,∞).

5. Given (δ, β) ∈ Q, the annealed polymer measure of

length n is the Gibbs measure Pδ,βn defined as

dPδ,βn
d(Pδ × P)

(ω, S) =
1

Zδ,βn
e−βH

ω
n (S), (ω, S) ∈ RN ×Π,

where

Zδ,βn = (Eδ × E)
[
e−βH

ω
n (S)

]
is the annealed partition function of length n.



Literature: The charged polymer with binary disorder in-
terpolates between

simple random walk β = 0
self-avoiding walk β = δ =∞
weakly self-avoiding walk β ∈ (0,∞), δ =∞

Only very little mathematical literature is available on the
charged polymer. In what follows we focus on d = 1 and
later comment on d ≥ 2.



PART I: general properties



KEY FORMULA:

For every n ∈ N and (δ, β) ∈ Q,

Zδ,βn M(δ)n = E

exp

 ∑
x∈Zd

G∗δ,β(`n(x))




with

`n(x) =
n∑
i=1

1{Si = x}

the local time of simple random walk at site x up to time

n, and G∗δ,β(`) the free energy at a site that is visited `

times (defined below).



§ FREE ENERGY

1. Let Q(i, j) be the probability matrix defined by

Q(i, j) =


1{j=0}, if i = 0, j ∈ N0,

(
i+j−1
i−1

) (
1
2

)i+j
, if i ∈ N, j ∈ N0,

which is the transition kernel of a critical Galton-Watson
branching process with a geometric offspring distribution.

2. For (δ, β) ∈ Q, let G∗δ,β be the function defined by

G∗δ,β(`) = logE
[
eδΩ`−βΩ2

`

]
, Ω` =

∑̀
k=1

ωk, ` ∈ N0.



3. For (µ, δ, β) ∈ [0,∞)×Q, define the N0 × N0 matrix

Aµ,δ,β(i, j) = e
−µ(i+j+1)+G∗δ,β(i+j+1)

Q(i+ 1, j), i, j ∈ N0.

4. Let λδ,β(µ) be the spectral radius of Aµ,δ,β. For every
(δ, β) ∈ Q, µ 7→ λδ,β(µ) is continuous, strictly decreasing
and log-convex on [0,∞), and is analytic on (0,∞), with a
finite strictly negative right-slope at 0.

5. For (δ, β) ∈ Q, let µ(δ, β) be the unique solution of the
equation

λδ,β(µ) = 1

when it exists and µ(δ, β) = 0 otherwise.
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THEOREM 1

(1) For every (δ, β) ∈ Q, the annealed free energy per

monomer

F (δ, β) = lim
n→∞

1

n
logZδ,βn

exists, takes values in (−∞,0], and satisfies the inequality

F (δ, β) ≥ f(δ) = − logM(δ) ∈ (−∞,0].

(2) The excess free energy

F ∗(δ, β) = F (δ, β)− f(δ)

is convex in (δ, β) and has the spectral representation

F ∗(δ, β) = µ(δ, β).



§ PHASE TRANSITION

The inequality F ∗(δ, β) ≥ 0 leads us to define two phases:

P> =
{

(δ, β) ∈ Q : F ∗(δ, β) > 0
}
,

P= = {(δ, β) ∈ Q : F ∗(δ, β) = 0
}
.

0 δ

β

P>
P=

βc(δ)



THEOREM 2

(1) There exists a critical curve δ 7→ βc(δ) such that

P> =
{

(δ, β) ∈ Q : 0 < β < βc(δ)
}
,

P= =
{

(δ, β) ∈ Q : β ≥ βc(δ)
}
.

(2) For every δ ∈ [0,∞), βc(δ) is the unique solution of the

equation λδ,β(0) = 1.

(3) δ 7→ βc(δ) is continuous, strictly increasing and convex

on [0,∞), is analytic on (0,∞), and satisfies βc(0) = 0.

(4) (δ, β) 7→ F ∗(δ, β) is analytic on P>.



§ LAWS OF LARGE NUMBERS

We proceed by stating a LLN for the empirical speed n−1Sn

and the empirical charge n−1Ωn, where

Sn =
n∑
i=1

Xi, Ωn =
n∑
i=1

ωi.

Let

B =
{

(δ, β) ∈ Q : 0 < β ≤ βc(δ)
}
, S = Q\B.

The set B will be referred to as the ballistic phase, the

set S as the subballistic phase, for reasons that become

apparent in the next theorem.
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THEOREM 3

(1) For every (δ, β) ∈ Q there exists a v(δ, β) ∈ [0,1] such

that

lim
n→∞Pδ,βn

(∣∣∣n−1Sn − v(δ, β)
∣∣∣ > ε

∣∣∣∣Sn > 0
)

= 0 ∀ ε > 0,

where

v(δ, β)

{
> 0, (δ, β) ∈ B,
= 0, (δ, β) ∈ S.

(2) For every (δ, β) ∈ B,

1

v(δ, β)
=
[
−

∂

∂µ
logλδ,β(µ)

]
µ=µ(δ,β)

.



THEOREM 4

(1) For every (δ, β) ∈ Q, there exists a ρ(δ, β) ∈ [0,∞) such

that

lim
n→∞Pδ,βn

(∣∣∣n−1Ωn − ρ(δ, β)
∣∣∣ > ε

)
= 0 ∀ ε > 0,

where

ρ(δ, β)

{
> 0, (δ, β) ∈ B,
= 0, (δ, β) ∈ S.

(2) For every (δ, β) ∈ B,

ρ(δ, β) =
∂

∂δ
µ(δ, β).



§ PHASE DIAGRAM

Picture of the ballistic phase B and the subballistic phase

S. The critical curve is part of B, which implies that the

phase transition is first order.
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Numerical plots of β 7→ v(δ, β) and β 7→ ρ(δ, β) for δ = 1:
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§ LARGE DEVIATION PRINCIPLES

Varadhan

THEOREM 5

For every (δ, β) ∈ Q:

(1) The sequence (n−1Sn)n∈N conditionally on {Sn > 0}n∈N
satisfies the LDP on [0,∞) with rate function Ivδ,β.

(2) The sequence (n−1Ωn)n∈N satisfies the LDP on [0,∞)

with rate function I
ρ
δ,β.

Pictures for (δ, β) ∈ int(B) and (δ, β) ∈ S are:
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Ivδ,β(θ)
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I
ρ
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ρ
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§ CENTRAL LIMIT THEOREMS

THEOREM 6

For every (δ, β) ∈ int(B) the scaled quantities

Sn − nv(δ, β)

σv(δ, β)
√
n
,

Ωn − nρ(δ, β)

σρ(δ, β)
√
n
,

converge in distribution to the standard normal law with

1

σ2
v (δ, β)

=

[
∂2

∂θ2
Ivδ,β(θ)

]
θ=v(δ,β)

,

1

σ2
ρ(δ, β)

=

[
∂2

∂θ′2
I
ρ
δ,β(θ′)

]
θ′=ρ(δ,β)

.



Numerical plots of β 7→ σ2
v (δ, β) and β 7→ σ2

ρ(δ, β) for δ = 1:
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PART II: asymptotic properties



§ SCALING OF THE CRITICAL CURVE

THEOREM 7

(1) As δ ↓ 0,

βc(δ)− 1
2δ

2 ∼ −a∗(1
2δ

2)4/3,

where a∗ comes from a certain Sturm-Liouville operator.

(2) As δ →∞,

βc(δ) ∼
δ

T

with

T = sup
{
t > 0: P(ω1 ∈ tZ) = 1

}



Either T > 0 (lattice case) or T = 0 (non-lattice case). If

T = 0 and ω1 has a bounded density with respect to the

Lebesgue measure, then

βc(δ) ∼
1

4

δ2

log δ
.

Note that the scaling behavior of the critical curve is ano-

malous for small charge bias. This implies that the critical

curve is not analytic at the origin.

Note that the scaling is also delicate for large charge bias.



0 δ

β

B

S

βc(δ)



§ CRITICAL SCALING OF THE EXCESS FREE ENERGY

The scaling behaviour of the excess free energy near the

critical curve fits with the phase transition being first order.

THEOREM 8

For every δ ∈ (0,∞),

F ∗(δ, β) ∼ Kδ[βc(δ)− β], β ↑ βc(δ),

for a certain explicit Kδ ∈ (0,∞).



§ WEAK INTERACTION SCALING

THEOREM 9

(1) For every δ ∈ (0,∞),

F (δ, β) ∼ −Aδβ2/3, v(δ, β) ∼ Bδβ1/3,

ρ(δ, β)− ρδ ∼ Cδβ2/3, β ↓ 0,

for certain explicit Aδ, Bδ, Cδ ∈ (0,∞), where ρδ = Eδ(ω1).

(2) For every ε > 0,

F (δ, β) ∼ βc(δ)− β, δ, β ↓ 0,

provided 1
2δ

2 − β � δ4/3.



§ CONCLUSIONS

• The annealed charged polymer in d = 1 exhibits a very

rich scaling behaviour.

• The phase transition between the ballistic phase and

the subballistic phase is first order.

• The large deviation rate functions for the speed and

the charge exhibit linear pieces in both phases.

• The limit of weak interaction is anomalous.



For d ≥ 2 we expect a similar richness:

Quentin Berger, dH, Julien Poisat, work in progress




