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§ STATISTICAL PHYSICS

Systems consisting of a very large number of interacting

components can be described by statistical ensembles, i.e.,

probability distributions on spaces of configurations.

Two important examples are:

I. micro-canonical ensemble
II. canonical ensemble

The former fixes the energy of the system, the latter fixes

the average energy of the system, with temperature as the

control parameter.



N particles described by a configuration space CN and an

energy function E : CN → R.

• Micro-canonical ensemble:

Pmic
N (c) =

{
1/ΩE∗ if E(c)=E∗,
0 else,

where ΩE∗ = |{c ∈ CN : E(c) = E∗}|.

• Canonical ensemble:

P can
N (c) =

1

N (β∗)
e−β

∗E(c),

where the inverse temperature β∗ is to be chosen such that

the average of E(c) equals E∗ (β∗ is a Lagrange multiplier).



In statistical physics textbooks the two ensembles are often

assumed (!) to be thermodynamically equivalent, the idea

being that for large systems the energy is always close to

its average value.

This is reasonable only for systems with interactions that

are short-ranged. But counter examples have been found

for systems with interactions that are long-ranged.



In this talk we will be interested in large random graphs,

i.e., the two ensembles of interest live on the set GN of all

graphs with N vertices where N →∞.

A realisation of a large random graph



§ DEFINITIONS

Given are a vector-valued function ~C on GN , and a specific

vector ~C∗ called the constraint.

I. The micro-canonical ensemble is defined by

Pmic
N (G) =

{
1/Ω ~C∗ if ~C(G) = ~C∗,
0 else,

where Ω ~C∗ = |{G ∈ GN : ~C(G) = ~C∗}|.

II. The canonical ensemble is defined by

P can
N (G) =

1

N (~θ∗)
e−

~θ∗ · ~C(G),

where N (~θ∗) is the normalising constant and ~θ∗ is to be

chosen such that the average of ~C(G) equals ~C∗.



INTERPRETATION

• Pmic
N models a random graph of which no information

is available other than the constraint.

• P can
N models a random graph of which no information

is available other than the average constraint.

The latter can be viewed as the solution to the problem of

statistical inference on the basis of the partial information

provided by the average constraint: maximum likelihood.



§ EQUIVALENCE

The two ensembles Pmic
N and P can

N are said to be equivalent

when their relative entropy per vertex defined by

sN
(
Pmic
N | P can

N

)
=

1

N

∑
G∈GN

Pmic
N (G) log

(
Pmic
N (G)

P can
N (G)

)

tends to zero as N →∞.



Complex networks form a new class of systems where the

breaking of ensemble equivalence manifests itself through

the presence of global constraints.

In this talk we illustrate this phenomenon via a number

of examples based on the so-called configuration model.
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§ THE CONFIGURATION MODEL

Vertices are assigned degrees. This is done by assigning

to each vertex a number of half-edges and matching these

up randomly.



In what follows we will consider graphs with a community

structure. We will be considering three examples:

1. Uni-partite community graphs.

2. Bi-partite community graphs.

3. Multi-partite community graphs.



§ UNI-PARTITE COMMUNITY GRAPHS

Consider a graph G = (V,E) with vertex set V = {1, . . . , N}
and edge set E such that all the vertices have prescribed
degrees k1, . . . , kN ∈ N0, i.e., ~C∗ = (k1, . . . , kN). Under the
sparseness condition

kmax = max
1≤i≤N

ki = o(
√
N), N →∞,

the number of such graphs is given by the formula

ΩN(k1, . . . , kN)

=

√
2(Nm1/e)

2Nm1∏
1≤i≤N ki!

exp

[
−

(m2)2 − (m1)2

4(m1)2
+ o

(
m3

N

)]

with

ml =
1

N

∑
1≤i≤N

(ki)
l, l = 1,2,3.



I. Under the micro-canonical ensemble the distribution of

G on the set GN is uniform:

Pmic
N (G) =

1

ΩN(k1, . . . , kN)
.

II. Under the canonical ensemble the distribution of G on

the set GN is tilted exponential:

P can
N (G) =

1

N ( ~C∗)
e−

∑
i∈V θ

∗
i ki(G)

=
∏
e∈E

(p∗e)
ae(G)(1− p∗e)1−ae(G).

Here, ae(G) = 1{e∈E} is the adjacency matrix and (θ∗i )i∈V

is replaced by (p∗e)e∈E with p∗(ij) = e
−θ∗i−θ

∗
j/(1 + e

−θ∗i−θ
∗
j).



But (p∗e)e∈E must be chosen such that the average degree

of vertex i is ki. It turns out that in the sparse regime

p∗(ij) ∼
kikj

Nm1
, N →∞.

Combining the above formulas, we find after some simple

calculation that

s = lim
N→∞

sN
(
Pmic
N | P can

N

)
= lim

N→∞
1

N

∑
1≤i≤N

g(ki)

with

g(k) = log
(

k!

kke−k

)
, k ∈ N0.



The formula for s has an interesting interpretation. Let

fN =
1

N

N∑
i=1

δki

denote the empirical distribution of the degrees. Let POIk
denote the Poisson distribution with average k. Then

g(k) = s
(
δk | POIk

)
.

Hence, if limN→∞ ‖fN − f‖`1(g) = 0 for some f ∈ M1(N0)

with ‖f‖`1(g) <∞, then the above formula becomes

s =
∑
k∈N0

f(k)g(k) = ‖f‖`1(g),

i.e., each vertex with degree k contributes an amount g(k)

to the relative entropy.



In summary:

Under the canonical ensemble the

degrees are asymptotically Poisson.

In other words, in the limit as N → ∞ the vertices have a

random degree with a Poisson distribution that has a mean

compatible with the constraint.

Consequently, there is breaking of ensemble equivalence

for all f 6= δ0.



Example 1:

k1 = · · · = kN = k = o(
√
N).

For k-regular graphs:

s = g(k) > 0.

• •

• •

N = 4, k = 2



Example 2:

N−1 |{1 ≤ i ≤ N : ki = k}| ≈ C k−τ , 1 ≤ k ≤ kcutoff,
with kcutoff = o(

√
N) and τ ∈ (1,∞) a tail exponent.

For scale-free graphs:

s ≈
1

2(τ − 1)
+ log

√
2π > 0.



§ BI-PARTITE COMMUNITY GRAPHS

Suppose that we are given two sets of vertices V, V ′ of sizes

N,N ′. We fix the two degree sequences

(k1, . . . , kN), (k′1, . . . , k
′
N ′),

and we only allow edges between V and V ′. In particular,

N∑
i=1

ki =
N ′∑
j=1

k′j = L

with L the total number of edges. The definition of Pmic
N,N ′

and P can
N,N ′ is adapted accordingly, with

~C∗ = (k1, . . . , kN , k
′
1, . . . , k

′
N ′).



V

V ′

N = 6, N ′ = 4

• • • • • •

• • • •



Under the sparseness condition

kmax lmax = o(L2/3)

it can be shown that

s = lim
N,N ′→∞

sN,N ′(P
mic
N,N ′ | P

can
N,N ′)

N +N ′

exists and equals

s = α
∑
k∈N0

fV (k)g(k) + (1− α)
∑
k∈N0

fV ′(k)g(k)

= α‖fV ‖`1(g) + (1− α)‖fV ′‖`1(g)

when fV , fV ′ are the limits of the two empirical distributions
of the degrees and

lim
N,N ′→∞

N

N +N ′
= α ∈ [0,1].



§ MULTI-PARTITE COMMUNITY GRAPHS

It is natural to consider constraints that are controlled by

a multi-partite graph.

•

uni-partite

• •

bi-partite

• •

•

etc.



Fix a number M ∈ N of communities. Each community

Cs has ns vertices. The set of corresponding graphs is

denoted by Gn1,...,nM .

Any graph G ∈ Gn1,...,nM is represented by its n1 × · · · × nM
adjacency matrix with elements

a(i,j)(G) =

1 there is an edge between i and j,

0 otherwise.

Fix the degree sequence for edges between all pairs of

communities (including a community and itself). Thus,

the constraints are

~C∗ =
{
~k ∗s→t =

(
k∗ ts1

, . . . , k∗ tsnh

)
: s, t = 1, . . . ,M

}
.



Necessarily,

L∗s,t =
∑
i∈Cs

k∗ ti =
∑
j∈Ct

k∗ sj ∀ s, t.

We abbreviate

k∗s→t = max
i∈Cs

k∗ ti , f
(nt)
s→t = n−1

s

∑
i∈Cs

δk∗ ti
,

and assume the existence of

As = lim
n1,...,nM→∞

ns

n
∀ s,

where n =
∑M
s=1 ns. The sparse regime corresponds to

k∗s→tk
∗
s→t = o(L∗s,t

2/3), ns, nt →∞ ∀ s 6= t,

k∗s→s = o(n
1/2
s ), ns →∞ ∀ s.



We further assume that for all s, t there exist an fs→t ∈
M1(N0) with ‖fs→t‖`1(g) <∞ such that

lim
ns→∞

‖f(ns)
s→t − fs→t‖`1(g) = 0.

THEOREM

Subject to the above assumptions,

s = lim
n1,...,nM→∞

n−1S
(
Pmic
n1,...,nM

| P can
n1,...,nM

)
=

∑
1≤s<t≤M

{
As ‖fs→t‖`1(g) +At ‖ft→s‖`1(g)

}

+
M∑
s=1

As ‖fs→s‖`1(g).



§ CONCLUSION

We have obtained a complete classification of breaking of

ensemble equivalence in random graphs with a community

structure subject to constraints on the degree sequences

between communities.

Breaking occurs if and only if the number of constraints

is extensive, i.e., linear in the number of vertices.



§ FUTURE CHALLENGES:

1. What is the formula for the relative entropy per vertex

in the non-sparse regime?

2. What happens when constraints are put on the number

of triangles, squares, etc. touching a vertex?

3. What is the effect of relaxing constraints, i.e., putting

constraints on functions of the degrees?


