Your name: Solution

1. Suppose that the number of earthquakes that occur in a year in California has a Poisson distribution with parameter 2. Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is $\frac{1}{3}$. Find the probability that there will be exactly 20 earthquakes of magnitude at least 5 in a year.

Solution to Quiz 5

Let number of earthquakes is Poisson (λ) distributed.
Let P denote the frobabillty that a given earthquake reading is higher that the specified limit in the problem.
For the event exactly m earthquake with specified readies to occur, note that at least in earthquake must occur.
Let E_{n} denote the event that n earthquake occur.
Let y denote the number of earthquakes with specied reading. Note that Y is a random variable.
Now

$$
\begin{aligned}
\text { Now } \mathbb{P}[Y=m]=\mathbb{P}\left[\{Y=m\} \cap \bigcup_{n=0}^{\infty} E_{n}\right]= & \mathbb{P}\left[\bigcup_{n=0}^{\infty}\{Y=m\} \cap E_{n}\right] \\
= & \sum_{n=0}^{\infty} \mathbb{P}\left[\{Y=m\} \cap E_{n}\right] \\
& \left\{\begin{array}{r}
E_{i} \cap E_{j}=\phi \\
\forall i \neq j
\end{array}\right.
\end{aligned}
$$

Also, given the event E_{n}, for $n \geqslant m$

$$
\mathbb{P}\left[\{Y=m\} \mid E_{n}\right]=\binom{n}{m} p^{m}(1-p)^{n-m}
$$

So, $P\left[\{Y=m\} \cap E_{n}\right]=\mathbb{P}\left[Y=m \mid E_{n}\right] \mathbb{P}\left[E_{n}\right]$
By assumption of froblem $P\left[E_{n}\right]=\frac{e^{-\lambda} \lambda^{n}}{n!}$

$$
\begin{aligned}
& \text { So, } \begin{aligned}
& \mathbb{P}[y=m]=\sum_{n=m}^{\infty}\binom{n}{m} p^{m}(1-p)^{n-m} \frac{e^{-\lambda} \lambda^{n}}{n!} \\
&=\frac{p^{m} e^{-\lambda}}{m!(1-p)^{m}} \sum_{n=m}^{\infty} \frac{1}{(n-m)!}(\lambda(1-p))^{n}=\frac{e^{-\lambda p}(\lambda p)^{m}}{m!}\left\{\begin{array}{l}
B y \text { using } \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\end{array}\right. \\
& \text { Thus putting } \lambda=2, p=\frac{1}{3, m=20 \text { or } \lambda=1, p=1 / 4, m=10} \\
& \text { we get the answers in two different problems. }
\end{aligned}
\end{aligned}
$$

