Due: Thursday, October 6th 2016

Problem to be turned in: 3,8

1. A standard light bulb has an average lifetime of four years with a standard deviation of one year. A Super D-Lux lightbulb has an average lifetime of eight years with a standard devaition of three years. A box contains many bulbs -90% of which are standard bulbs and 10% of which are Super D-Lux bulbs. A bulb is selected at random from the box. What are the average and standard deviation of the lifetime of the selected bulb?
2. Let X and Y be described by the joint distribution

	$X=-1$	$X=0$	$X=1$
$Y=-1$	$1 / 15$	$2 / 15$	$2 / 15$
$Y=0$	$2 / 15$	$1 / 15$	$2 / 15$
$Y=1$	$2 / 15$	$2 / 15$	$1 / 15$

and answer the following questions.
(a) Calculate $E[X \mid Y=-1]$.
(b) Calculate $\operatorname{Var}[X \mid Y=-1]$.
(c) Describe the distribution of $E[X \mid Y]$.
(d) Describe the distribution of $\operatorname{Var}[X \mid Y]$.
3. Let X and Y be discrete random variables. Let x be in the range of X and let y be in the range of Y.
(a) Suppose X and Y are independent. Show that $E[X \mid Y=y]=E[X]$ (and so $E[X \mid Y]=E[X]$).
(b) Show that $E[X \mid X=x]=x$ (and so $E[X \mid X]=X$).
4. Let $X \sim$ Uniform $\{1,2, \ldots, n\}$ be independent of $Y \sim \operatorname{Uniform}\{1,2, \ldots, n\}$. Let $Z=\max (X, Y)$ and $W=\min (X, Y)$.
(a) Find the joint distribution of (Z, W).
(b) Find $E[Z \mid W]$.
5. Consider the experiment of flipping two coins. Let X be the number of heads among the coins and let Y be the number of tails among the coins.
(a) Should you expect X and Y to be posivitely correlated, negatively correlated, or uncorrelated? Why?
(b) Calculate $\operatorname{Cov}[X, Y]$ to confirm your answer to (a).
6. Let X, Y, and Z be discrete random variables, and let $a, b \in \mathbb{R}$. Then,
(a) $\operatorname{Cov}[X, Y]=\operatorname{Cov}[Y, X]$;
(b) $\operatorname{Cov}[X, a Y+b Z]=a \cdot \operatorname{Cov}[X, Y]+b \cdot \operatorname{Cov}[X, Z] ;$
(c) $\operatorname{Cov}[a X+b Y, Z]=a \cdot \operatorname{Cov}[X, Z]+b \cdot \operatorname{Cov}[Y, Z]$; and
7. Let X and Y be two discrete random variables both with finite variances σ_{x} and σ_{y}. Let their means be μ_{x} and μ_{y} respectively. Then
(a) Using $0 \leq E\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}-\frac{Y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]$ show that $\operatorname{Cov}[X, Y] \leq \sigma_{X} \sigma_{Y}$.
(b) Show that $\operatorname{Cov}[X, Y] \geq-\sigma_{X} \sigma_{Y}$ and xonclude that the correlation cooefficient $\rho[X, Y]=$ $\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}}$ is such that

$$
-1 \leq \rho[X, Y] \leq 1
$$

(c) Prove that $\rho[X, Y]= \pm 1$ if and only if there are $a, b \in \mathbb{R}$ with $a \neq 0$ for which $P(Y=a X+b)=$ 1.
8. Let $X \sim \operatorname{Uniform}(\{0,1,2\})$ and let Y be the number of heads in X flips of a coin.
(a) Should you expect X and Y to be positively correlated, negatively correlated, or uncorrelated? Why?
(b) Calculate $\operatorname{Cov}[X, Y]$ to confirm your answer to (a).
9. Let X and Y be discrete random variables with finite variances.
(a) Show that

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y] .
$$

(b) Use (a) to conclude that when X and Y are positively correlated, then $\operatorname{Var}[X+Y]>\operatorname{Var}[X]+$ $\operatorname{Var}[Y]$, while when X and Y are negatively correlated, $\operatorname{Var}[X+Y]<\operatorname{Var}[X]+\operatorname{Var}[Y]$.
(c) Suppose $X_{i} 1 \leq i \leq n$ are discrete random variables with finite variance and covariances. Use induction and (a) to conclude that

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left[X_{i}, X_{j}\right] .
$$

