Due: Thursday, October 6th 2016

Problem to be turned in: 3,8

- 1. A standard light bulb has an average lifetime of four years with a standard deviation of one year. A Super D-Lux lightbulb has an average lifetime of eight years with a standard deviation of three years. A box contains many bulbs – 90% of which are standard bulbs and 10% of which are Super D-Lux bulbs. A bulb is selected at random from the box. What are the average and standard deviation of the lifetime of the selected bulb?
- 2. Let X and Y be described by the joint distribution

	X = -1	X = 0	X = 1
Y = -1	1/15	2/15	2/15
Y = 0	2/15	1/15	2/15
Y = 1	2/15	2/15	1/15

and answer the following questions.

- (a) Calculate E[X|Y = -1].
- (b) Calculate Var[X|Y = -1].
- (c) Describe the distribution of E[X|Y].
- (d) Describe the distribution of Var[X|Y].
- 3. Let X and Y be discrete random variables. Let x be in the range of X and let y be in the range of Y.
 - (a) Suppose X and Y are independent. Show that E[X|Y = y] = E[X] (and so E[X|Y] = E[X]).
 - (b) Show that E[X|X = x] = x (and so E[X|X] = X).
- 4. Let $X \sim \text{Uniform } \{1, 2, \dots, n\}$ be independent of $Y \sim \text{Uniform } \{1, 2, \dots, n\}$. Let $Z = \max(X, Y)$ and $W = \min(X, Y)$.
 - (a) Find the joint distribution of (Z, W).
 - (b) Find $E[Z \mid W]$.
- 5. Consider the experiment of flipping two coins. Let X be the number of heads among the coins and let Y be the number of tails among the coins.
- (a) Should you expect X and Y to be posivitely correlated, negatively correlated, or uncorrelated? Why?
- (b) Calculate Cov[X, Y] to confirm your answer to (a).
- 6. Let X, Y, and Z be discrete random variables, and let $a, b \in \mathbb{R}$. Then,
 - (a) Cov[X, Y] = Cov[Y, X];
 - (b) $Cov[X, aY + bZ] = a \cdot Cov[X, Y] + b \cdot Cov[X, Z];$
 - (c) $Cov[aX + bY, Z] = a \cdot Cov[X, Z] + b \cdot Cov[Y, Z];$ and
- 7. Let X and Y be two discrete random variables both with finite variances σ_x and σ_y . Let their means be μ_x and μ_y respectively. Then
 - (a) Using $0 \le E[(\frac{X-\mu_X}{\sigma_X} \frac{Y-\mu_Y}{\sigma_Y})^2]$ show that $Cov[X,Y] \le \sigma_X \sigma_Y$.

(b) Show that $Cov[X,Y] \ge -\sigma_X \sigma_Y$ and xonclude that the correlation cooefficient $\rho[X,Y] = \frac{Cov[X,Y]}{\sigma_X \sigma_Y}$ is such that

$$-1 \le \rho[X, Y] \le 1$$

- (c) Prove that $\rho[X, Y] = \pm 1$ if and only if there are $a, b \in \mathbb{R}$ with $a \neq 0$ for which P(Y = aX + b) = 1.
- 8. Let $X \sim \text{Uniform}(\{0, 1, 2\})$ and let Y be the number of heads in X flips of a coin.
- (a) Should you expect X and Y to be positively correlated, negatively correlated, or uncorrelated? Why?
- (b) Calculate Cov[X, Y] to confirm your answer to (a).
- 9. Let X and Y be discrete random variables with finite variances.
 - (a) Show that

$$Var[X+Y] = Var[X] + Var[Y] + 2Cov[X,Y].$$

- (b) Use (a) to conclude that when X and Y are positively correlated, then Var[X+Y] > Var[X] + Var[Y], while when X and Y are negatively correlated, Var[X+Y] < Var[X] + Var[Y].
- (c) Suppose X_i $1 \le i \le n$ are discrete random variables with finite variance and covariances. Use induction and (a) to conclude that

$$Var[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} Var[X_i] + 2\sum_{1 \le i < j \le n} Cov[X_i, X_j].$$