Due: Tuesday, August 30th, 2016
Problem to be turned in: 2
Due: Thursday, September 1st, 2016
Problem to be turned in: 7

1. Consider the experiment of flipping a coin four times and recording the sequence of heads and tails. Let S be the sample space of all sixteen possible orderings of the results. Let X be the function on S describing the number of tails among the flips. Let Y be the function on S describing the first flip (if any) to come up tails.
(a) Create a table as in Example 3.1.1. describing functions X and Y.
(b) Use the table to calculate $P(X=2)$.
(c) Use the table to calculate $P(Y=3)$.
2. A pair of fair dice are thrown. Let X represent the larger of the two values on the dice and let Y represent the smaller of the two values.
(a) Describe S, the domain of functions X and Y. How many elements are in S ?
(b) What are the ranges of X and Y. Do X and Y have the same range? Why or why not?
(c) Describe the distribution of X and describe the distribution of Y by finding the probability mass function of each. Is it true that X and Y have the same distribution?
3. A pair of fair dice are thrown. Let X represent the number of the first die and let Y represent the number of the second die.
(a) Describe S, the domain of functions X and Y. How many elements are in S ?
(b) Describe T, the range of functions X and Y. How many elements are in T ?
(c) Describe the distribution of X and describe the distribution of Y by finding the probability mass function of each. Is it true that X and Y have the same distribution?
(d) Are X and Y the same function? Why or why not?
4. Use the \sim notation to classify the distributions of the random variables described by the scenarios below. For instance, if a scenario said, "let X be the number of heads in three flips of a coin" the approrpriate answer would be $X \sim \operatorname{Binomial}\left(3, \frac{1}{2}\right)$ since that describes the number of successes in three Bernoulli trials.
(a) Let X be the number of 5's seen in four die rolls. What is the distribution of X ?
(b) Each ticket in a certain lottery has a 20% chance to be a prize-winning ticket. Let Y be the number of tickets that need to be purchased before seeing the first prize-winner. What is the distribution of Y ?
(c) A class of ten students is comprised of seven women and three men. Four students are randomly selected from the class. Let Z denote the number of men among the four randomly selected students. What is the distribution of Z ?
5. Let $X: S \rightarrow T$ be a discrete random variable. Suppose $\left\{B_{i}\right\}_{i \geq 1}$ are sequence of events in T then show that $X^{-1}\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\bigcup_{i=1}^{\infty} X^{-1}\left(B_{i}\right)$ and that if B_{i} and B_{j} are disjoint, then so are $X^{-1}\left(B_{i}\right)$ and $X^{-1}\left(B_{j}\right)$.
6. An urn has four balls labeled $1,2,3$, and 4. A first ball is drawn and its number is denoted by X. A second ball is then drawn from the three remaining balls in the urn and its number is denoted by Y.
(a) Calculate $P(X=1)$.
(b) Calculate $P(Y=2 \mid X=1)$.
(c) Calculate $P(Y=2)$.
(d) Calculate $P(X=1, Y=2)$.
(e) Are X and Y independent? Why or why not?
7. Two dice are rolled. Let X denote the sum of the dice and let Y denote the value of the first die.
(a) Calculate $P(X=7)$ and $P(Y=4)$.
(b) Calculate $P(X=7, Y=4)$.
(c) Calculate $P(X=5)$ and $P(Y=4)$.
(d) Calculate $P(X=5, Y=4)$.
(e) Are X and Y independent? Why or why not?
