Due: Thursday, October 20th, 2016

Problem to be turned in: 2, 3

1. Let X be a random variable with density $f(x)=3 x^{2}$ for $0<x<1$ (and $f(x)=0$ otherwise). Calculate the distribution function of X.
2. Let $X \sim \operatorname{Uniform}(0,1)$.
(a) Let $Y=\sqrt{X}$. Determine the density of Y.
(b) Let $Z=\frac{1}{X}$. Determine the density of Z.
(c) Let $r>0$ and define $Y=r X$. Show that Y is uniformly distributed on $(0, r)$.
(d) Let $Y=1-X$. Show that $Y \sim \operatorname{Uniform}(0,1)$ as well.
(e) Let a and b be real numbers with $a<b$ and let $Y=(b-a) X+a$. Show that $Y \sim \operatorname{Uniform}(a, b)$.
(f) Find a function $g(x)$ (which is strictly increasing) such that the random variable $Y=g(X)$ has density $f_{Y}(y)=3 y^{2}$ for $0<y<1$ (and $f_{Y}(y)=0$ otherwise).
3. If $X \sim \operatorname{Normal}(0,1)$. Let $Y=X^{2}$. Find the density function of Y
4. Let $\alpha>0$ and X be a random variable with the p.d.f given by

$$
f(x)=\left\{\begin{array}{lc}
\frac{\alpha}{x^{\alpha+1}} & 1 \leq x<\infty \\
0 & \text { otherwise }
\end{array}\right.
$$

The random variable X is said to have Pareto (α) distribution.
(a) Find the distribution of $X_{1}=X^{2}$
(b) Find the distribution of $X_{2}=\frac{1}{X}$
(c) Find the distribution of $X_{3}=\ln (X)$

In the above exercises we assume that the transformation function is defined as above when the p.d.f of X is positive and zero otherwise.
5. Let X be a continuous random variable with probability density function $f_{X}: \rightarrow \mathbb{R}$. Let $a>0$, $b \in \mathbb{R} Y=\frac{1}{a}(X-b)^{2}$. Show that Y is also a continuous random variable with probability density function $f_{Y}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f_{Y}(y)=\frac{1}{2 \sqrt{a y}}\left[f_{X}(\sqrt{a y}+b)-f_{X}(-\sqrt{a y}+b)\right]
$$

6. Let $-\infty \leq a<b \leq \infty$ and $I=(a, b)$ and $g: I \rightarrow \mathbb{R}$. Let X be a continuous random variable whose density f_{X} is zero on the complement of I. Set $Y=g(X)$.
(a) Let g be a differentiable strictly increasing function.
(i) Show that inverse of g exists and g^{-1} is strictly increasing on $g(I)$.
(ii) For any $y \in \mathbb{R}$, show that $P(Y \leq y)=P\left(X \leq g^{-1}(y)\right)$
(iii) Show that Y has a density $f_{Y}(\cdot)$ given by

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)
$$

(b) Let g be a differentiable strictly decreasing function.
(i) Show that inverse of g exists and g^{-1} is strictly decreasing on $g(I)$.
(ii) For any $y \in \mathbb{R}$, show that $P(Y \leq y)=1-P\left(X \leq g^{-1}(y)\right)$
(iii) Show that Y has a density $f_{Y}(\cdot)$ given by

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left(-\frac{d}{d y} g^{-1}(y)\right)
$$

7. Let $U \sim$ Uniform $(0,1)$. Let X be a continuous random variable with a distribution function F. Extend $F: \mathbb{R} \rightarrow \mathbb{R}$ to $F: \mathbb{R} \cup\{-\infty\} \cup\{\infty\} \rightarrow \mathbb{R}$ by setting $F(\infty)=1$ and $F(-\infty)=0$. Define the generalised inverse of $F, G:[0,1] \rightarrow \mathbb{R} \cup\{-\infty\} \cup\{\infty\}$ by

$$
G(y)=\inf \{x \in \mathbb{R}: F(x) \geq y\} .
$$

Show that
(a) Show that for all $y \in[0,1], F(G(y))=y$.
(b) Show that for all $x \in \mathbb{R}$ and $y \in[0,1]$

$$
F(x) \geq y \Longleftrightarrow x \geq G(y)
$$

(c) $Y=G(U)$ has the same distribution as X.
(d) $Z=F(X)$ has the same distribution as U.

