Due: Thursday, October 13th, 2016

Problem to be turned in: 2,4,13,14

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } 0<x<1 \\
2-x & \text { if } 1 \leq x<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Sketch a graph of the function f.
(b) Show that f is a probability density function.
(c) Use f to calculate : $P\left(\left(0, \frac{1}{4}\right), P\left(\left(\frac{3}{2}, 2\right)\right), P((-3,-2))\right.$ and $P\left(\left(\frac{1}{2}, \frac{3}{2}\right)\right)$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
k & \text { if } 0<x<\frac{1}{4} \\
2 k & \text { if } \frac{1}{4} \leq x<\frac{3}{4} \\
3 k & \text { if } \frac{3}{4} \leq x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Find k that makes f a probability density function.
(b) Sketch a graph of the function f.
(c) Use f to calculate : $P\left(\left(0, \frac{1}{4}\right), P\left(\left(\frac{1}{4}, \frac{3}{4}\right)\right), P\left(\left(\frac{3}{4}, 1\right)\right)\right.$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
k \cdot \sin (x) & \text { if } 0<x<\pi \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Determine the value of k that makes f a probability density function.
(b) Calculate $P\left(\left(0, \frac{1}{2}\right)\right)$ and $P\left(\left(\frac{1}{2}, 1\right)\right)$.
(c) Which will be larger, $P\left(\left(0, \frac{1}{4}\right)\right)$ or $P\left(\left(\frac{1}{4}, \frac{1}{2}\right)\right)$? Explain how you can answer this question without actually calculating either probability.
(d) A game is played in the following way. A random variable X is selected with a density described by f above. You must select a number r and you win the game if the random variable results in an outcome in the interval ($r-0.01, r+0.01$). Explain how you should choose r to maximize your chance of winning the game. (A formal proof requires only basic calculus, but it should take very little computation to determine the correct answer).
4. Let $\lambda>0$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & \text { if } 0<x \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show that f is a probability density function.
(b) Let $a>0$. Find $P((a, \infty))$.
5. Let $a, b \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { if } a<x<b \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show that f is a probability density function.
(b) Show that if $I, J \subset[a, b]$ are two intervals that have the same length, then $P(I)=P(J)$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{6} x^{2} e^{-x} & \text { if } 0<x \\
0 & \text { otherwise }
\end{array}\right.
$$

Show that f is a probability density function.
7. Suppose X was continuous random variable with distribution function F. Express the following probabilities in terms of F :
(a) $P(a<X \leq b)$, where $-\infty<a<b<\infty$
(b) $P(a<X<\infty)$ where $a \in \mathbb{R}$.
(c) $P(|X-a| \geq b)$ where $a, b \in \mathbb{R}$.
8. Let $R>0$ and $X \sim$ Uniform $[0, R]$. Let $Y=\min \left(X, \frac{R}{10}\right)$. Find the distribution function of Y.
9. Let X be a random variable with distribution function given by

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0<x<\frac{1}{4} \\ \frac{x}{2}+\frac{1}{8} & \text { if } \frac{1}{4} \leq x<\frac{3}{4} \\ 2 x-1 & \text { if } \frac{3}{4} \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

(a) Sketch a graph of the function F.
(b) Use F to calculate : $P\left(\left[0, \frac{1}{4}\right)\right), P\left(\left[\frac{1}{8}, \frac{3}{2}\right]\right), P\left(\left(\frac{3}{4}, \frac{7}{8}\right]\right)$.
(c) Find the probabilty density function of X.
10. Let X be a random variable whose probability density function $f: \mathbb{R} \rightarrow[0,1]$ is given by

$$
f(x)= \begin{cases}k x^{k-1} e^{-x^{k}} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the distribution function of X for $k=2$.
(b) Find the distribution function of X for general k.
11. Let X be a random variable whose probability density function $f: \mathbb{R} \rightarrow[0,1]$ is given by

$$
f(x)= \begin{cases}\frac{2}{\pi R^{2}} \sqrt{R^{2}-x^{2}} & \text { if }-R<x<R \\ 0 & \text { otherwise }\end{cases}
$$

12. Let X be a random variable whose distribution function $F: \mathbb{R} \rightarrow[0,1]$ is given by

$$
F(x)= \begin{cases}0 & \text { if } x \leq 0 \\ \frac{2}{\pi} \arcsin (\sqrt{x}) & \text { if } 0<x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

Find the probability density function of X. The distribution of X is called the standard arcsine law.
13. Let X be a random variable with density $f(x)=2 x$ for $0<x<1$ (and $f(x)=0$ otherwise). Calculate the distribution function of X.
14. Let $X \sim \operatorname{Uniform}(\{1,2,3,4,5,6\})$. Despite the fact this is a discrete random variable without a density, the distribution function $F_{X}(x)$ is still defined. Find a piecewise defined expression for $F_{X}(x)$.

