Due: Tuesday August 30th, $\mathbf{2 0 0 5}^{1}$

Problem 2,3 (a)-(c),4

1. Suppose μ is a finitely additive set function defined on \mathcal{A}.
(i) Then, for all $A, B \in \mathcal{A}, \mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$.

In particular, if $\mu(\Omega)<\infty$ (so that there is no problem with subtraction), then

$$
\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)
$$

(ii) Can you write down a general formula for $\mu(A \cup B \cup C), A, B, C \epsilon \mathcal{A}$, (or, more generally, for $\mu\left(\cup_{i=1}^{n} A_{i}\right)$, when $\left.\left\{A_{i}\right\}_{i=1}^{n} \subseteq \mathcal{A}\right)$ - under the assumption that $\mu(\Omega)<\infty$?
2. Let Ω be a countable set and $\mathcal{A}=2^{\Omega}$ be the collection of all subsets of Ω. Then,
(i) \mathcal{A} is a σ-algebra;
(ii) if $\mu: \mathcal{A} \rightarrow[0, \infty]$ is defined by $\mu(E)=$ 'number of elements in E ', then μ is a measure, and is called the counting measure on Ω (since μ counts the number of elements in a set).
(iii) If $\Omega=\left\{w_{1}, w_{2}, \ldots\right\}$ is an enumeration of Ω, and if Ω is infinite, let $A_{n}=\left\{w_{n}, w_{n+1}, \ldots.\right\}$; deduce that $A_{n} \downarrow \emptyset$ but

$$
\mu(\emptyset)=0 \neq \infty=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

(iv) If μ is a general possibly infinite measure defined on an algebra \mathcal{A} of subsets of any set Ω, and if $A, A_{n} \in \mathcal{A}, A_{1} \supseteq A_{2} \supseteq, \ldots, A=\cap_{n=1}^{\infty} A_{n}$, then show that $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$ provided there exists some k so that $\mu\left(A_{k}\right)<\infty$.
3. Let $I=[0,1]$. Let $I_{1}=I_{11}=\left(\frac{1}{3}, \frac{2}{3}\right)$ be the open middle third interval of I. Next, let I_{21} and I_{22} be the two open middle third intervals of $I-I_{1}$. Let $I_{2}=I_{21} \cup I_{22}$. For $j \geq 3$ and $k=1,2,3 \ldots, 2^{j-1}$, let $I_{j k}$ be the open middle third intervals of $I-\cup_{k=1}^{j-1} I_{k}$ and let $I_{j}=\cup_{k=1}^{2 j-1} I_{j k}$. Finally, let $C=I-\cup_{j=1}^{\infty} I_{j}$. C is called the cantor set.
(a) Show that C is compact, nowheredense and totally disconnected.
(b) Show that C is an uncountable closed set.
(c) Show that $\lambda(C)=0$, where λ is lebesgue measure on $[0,1]$.
(d) For $\alpha \in(0,1)$, construct a set C_{α} similar to C by removing open α intervals. Calculate $\lambda\left(C_{\alpha}\right)$
(e) Show that there exists a Borel set $A \subset[0,1]$ such that $0<\lambda(A \cap I)<\lambda(I)$ for every subinterval I of $[0,1]$.
4. Suppose $(\Omega, \mathcal{B}, \mu)$ is a σ-finite measure space, and suppose \mathcal{A} is an algebra of subsets of Ω such that $\mathcal{B}=\sigma(\mathcal{A})$. Show that if $B \in \mathcal{B}$, and if $\varepsilon>0$, then there exists $A \in \mathcal{A}$ such that $\mu(A \Delta B)<\varepsilon$ - where $A \Delta B=(A-B) \cup(B-A)$. (Hint: First consider the case when μ is finite; in that case show that the collection of sets B in \mathcal{B} for which the desired conclusion holds, is a monotone class containing \mathcal{A}.)

[^0]
Due: Thursday September 1st, $\mathbf{2 0 0 5}^{2}$

Problem 6, 7,8
5. Let P be any probability measure on $(\mathbb{R}, \mathcal{B})$. Show that for any borel set B and any $\epsilon>0$ there is an open set $U \supset B$ and a compact set $K \subset B$ such that $P\left(U \cap K^{c}\right)<\epsilon$.
6. Let P be any probability measure on $\left(\mathbb{R}^{2}, \mathcal{B}^{2}\right)$, where \mathcal{B}^{2} is the Borel σ-algebra on \mathbb{R}^{2}. Show that $P_{1}(B)=P(B \times \mathbb{R})$ is a probability measure on $(\mathbb{R}, \mathcal{B})$.
7. Let \mathcal{A} denote the algebra $\mathcal{A}=\mathcal{A}(\mathcal{S})$ considered in Problem 6 Hw 1. Let $\Omega=\mathbb{Q}$ denote the set of rational numbers in \mathbb{R}, and let $\mathcal{A}_{0}=\mathcal{A} \cap \mathbb{Q}$. Consider the measure μ defined on \mathcal{A}_{0} by $\mu(A)=0$ or ∞ according as $A=\emptyset$ or $A \neq \emptyset$. Show that there exist more than one measure on $\sigma\left(\mathcal{A}_{0}\right)$ (in \mathbb{Q}) which agree with μ on \mathcal{A}_{0}.
8. Let $(\Omega, \mathcal{B}, \mu)$ be a σ-finite measure space, let \mathcal{A} be any algebra of subsets of Ω such that $\mathcal{B}=$ $\sigma(\mathcal{A})$, and let $\mu_{0}=\mu \mid \mathcal{A}$.
(i) Show that $\mu_{0}^{*}=\mu^{*}$ (as functions on 2^{Ω}) and that in fact

$$
\mu_{0}^{*}(E)=\mu^{*}(E)=\inf \{\mu(B): B \in \mathcal{B}, E \subseteq B\}
$$

for all subsets E of Ω.
(ii) If $N \subseteq \Omega$ and $\mu^{*}(N)=0$, show that $N \in \mathcal{M}(\mu)$; we say that $\left(\Omega, \mathcal{M}(\mu), \mu^{*}\right)$ is a 'complete' measure space - meaning that if $N \subseteq M, M \in \mathcal{M}(\mu)$ and $\mu^{*}(M)=0$, then $N \in \mathcal{M}(\mu)$; i.e., $\mathcal{M}(\mu)$ contains all μ^{*} - null sets.
(iii) Show that $E \epsilon \mathcal{M}(\mu)$ if and only if there exist $B_{0}, B_{1} \epsilon \mathcal{B}$ such that $B_{0} \subseteq E \subseteq B_{1}$ and $\mu\left(B_{1}-B_{0}\right)=$ 0 . (Hint : First assume $\mu(\Omega)<\infty$. (The general case easily follows from this by the assumed σ finiteness.) Use (i) to lay hands on B_{1}. Define B_{0} to be the B_{1} you would have got for E^{\prime}.)
(iv) Make precise the statement that $\left(\Omega, \mathcal{M}(\mu), \mu^{*}\right)$ is 'the completion' of $(\Omega, \mathcal{B}, \mu)$.

[^1]
[^0]: ${ }^{1}$ Please give the assignments to Ms. Asha in the Statmath office.

[^1]: ${ }^{2}$ Please give the assignments to Ms. Asha in the Statmath office.

