Due: Tuesday August 9th

Problems to be turned in: 2,3(b), 7,9,10

1. Let \mathbb{N} be the set of natural numbers. Show that $\operatorname{Card}(\mathcal{P}(\mathbb{N})=\mathbb{R}$.
2. Suppose $\Omega \in \mathcal{F}$ and that $A, B \in \mathcal{F}$ implies that $A \cap B^{c} \in \mathcal{F}$ show that \mathcal{F} is an algebra.
3. Show the following: (a) If \mathcal{B} is a σ-algebra, then \mathcal{B} is an algebra as well as a monotone class.
(b) If \mathcal{B} is an algebra as well as a monotone class, then \mathcal{B} is a σ-algebra.
4. Solve the following: (a) How many distinct algebras of subsets of Ω exist, if Ω is a three element set?
(b) If \mathcal{A} is a finite algebra of subsets of (a possibly infinite set) Ω, can you say something about the number of distinct sets in \mathcal{A} ?
5. If \mathcal{A} is an algebra of sets in Ω, and if $\left\{E_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{A}$, then there exist sequences $\left\{S_{n}\right\}_{n=1}^{\infty},\left\{D_{n}\right\}_{n=1}^{\infty}$ of sets in \mathcal{A} such that: (i) $S_{1} \subset S_{2} \subset S_{3} \subset \ldots \ldots .$. ;
(ii) $D_{n} \cap D_{m}=\emptyset$ if $n \neq m$; and
(iii) $\cup_{k=1}^{n} E_{k}=\cup_{k=1}^{n} S_{k}=\cup_{k=1}^{n} D_{k}$, for $n=1,2, \ldots \ldots$.

Further, conditions (i) - (iii) uniquely determine the sets S_{n} and D_{n}, for all n.
6. Let $\Omega=\mathbb{R}$, let \mathcal{S} denote the collection of intervals of the form (a,b], where $-\infty \leq a<b \leq \infty$ (where of course $(a, \infty]$ is to be interpreted as (a, ∞)). Show that a typical non-empty element of $\mathcal{A}(\mathcal{S})$, the algebra generated by \mathcal{S}, is of the form $\coprod_{k=1}^{n} I_{k}$, where $n=1,2, \ldots$ and $I_{k} \in \mathcal{S}$ for $1 \leq k \leq n$.
7. Let \mathcal{A} be an algebra of subsets of a set Ω. Let $\Omega_{0} \in \mathcal{A}$. Define $\mathcal{A} \cap \Omega_{0}=\left\{A \cap \Omega_{0}: A \in \mathcal{A}\right\}$. Show that $\mathcal{A} \cap \Omega_{0}$ is an algebra of subsets of Ω_{0}, and that $\mathcal{A} \cap \Omega_{0}$ is a σ-algebra (respectively, monotone class) if \mathcal{A} is. (In the case when $\mathcal{A} \cap \Omega_{0} \in \Omega$, it is more natural and customary to write $\left.\mathcal{A}\right|_{\Omega_{0}}$ instead of $\mathcal{A} \cap \Omega_{0}$.)
8. Assume \mathcal{A} is a σ-algebra on Ω. Let $B \subset \Omega$. Let $C=\mathcal{A} \cup\{B\}$. Show that $\sigma(C)=\sigma\{(B \cap U) \cup$ $\left.\left(B^{c} \cap V\right): U, V \in \mathcal{A}\right\}$
9. Assume \mathcal{A} is a σ-algebra on Ω. If $\left\{A_{1}, A_{2}, \ldots A_{n}\right\}$ form a partition of Ω, then $\operatorname{describe} \sigma(\mathcal{A} \cup$ $\left.\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)$.
10. Let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be two σ-algebras on Ω. Show that $\sigma\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right\}=\sigma(\mathcal{C})$ where $\mathcal{C}=\left\{A_{1} \cup A_{2}: A_{1} \in\right.$ $\left.\mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\}$.

