Due: Tuesday August 9th

Problems to be turned in: 2,3(b), 7,9,10

- 1. Let \mathbb{N} be the set of natural numbers. Show that $Card(\mathcal{P}(\mathbb{N}) = \mathbb{R})$.
- 2. Suppose $\Omega \in \mathcal{F}$ and that $A, B \in \mathcal{F}$ implies that $A \cap B^c \in \mathcal{F}$ show that \mathcal{F} is an algebra.
- 3. Show the following: (a) If B is a σ-algebra, then B is an algebra as well as a monotone class.
 (b) If B is an algebra as well as a monotone class, then B is a σ-algebra.
- 4. Solve the following: (a) How many distinct algebras of subsets of Ω exist, if Ω is a three element set?

(b) If \mathcal{A} is a finite algebra of subsets of (a possibly infinite set) Ω , can you say something about the number of distinct sets in \mathcal{A} ?

- 5. If A is an algebra of sets in Ω, and if {E_n}_{n=1}[∞] ⊆ A, then there exist sequences {S_n}_{n=1}[∞], {D_n}_{n=1}[∞] of sets in A such that: (i) S₁ ⊂ S₂ ⊂ S₃ ⊂;
 (ii) D_n ∩ D_m = Ø if n ≠ m; and
 (iii) ∪_{k=1}ⁿ E_k = ∪_{k=1}ⁿ S_k = ∪_{k=1}ⁿ D_k, for n = 1, 2,
 Further, conditions (i) (iii) uniquely determine the sets S_n and D_n, for all n.
- 6. Let $\Omega = \mathbb{R}$, let S denote the collection of intervals of the form (a,b], where $-\infty \leq a < b \leq \infty$ (where of course $(a, \infty]$ is to be interpreted as (a, ∞)). Show that a typical non-empty element of $\mathcal{A}(S)$, the algebra generated by S, is of the form $\coprod_{k=1}^{n} I_k$, where $n = 1, 2, \ldots$ and $I_k \in S$ for $1 \leq k \leq n$.
- 7. Let \mathcal{A} be an algebra of subsets of a set Ω . Let $\Omega_0 \in \mathcal{A}$. Define $\mathcal{A} \cap \Omega_0 = \{A \cap \Omega_0 : A\epsilon \mathcal{A}\}$. Show that $\mathcal{A} \cap \Omega_0$ is an algebra of subsets of Ω_0 , and that $\mathcal{A} \cap \Omega_0$ is a σ -algebra (respectively, monotone class) if \mathcal{A} is. (In the case when $\mathcal{A} \cap \Omega_0 \in \Omega$, it is more natural and customary to write $\mathcal{A}|_{\Omega_0}$ instead of $\mathcal{A} \cap \Omega_0$.)
- 8. Assume \mathcal{A} is a σ -algebra on Ω . Let $B \subset \Omega$. Let $C = \mathcal{A} \cup \{B\}$. Show that $\sigma(C) = \sigma\{(B \cap U) \cup (B^c \cap V) : U, V \in \mathcal{A}\}$
- 9. Assume \mathcal{A} is a σ -algebra on Ω . If $\{A_1, A_2, \ldots, A_n\}$ form a partition of Ω , then describe $\sigma(\mathcal{A} \cup \{A_1, A_2, \ldots, A_n\})$.
- 10. Let $\mathcal{A}_1, \mathcal{A}_2$ be two σ -algebras on Ω . Show that $\sigma(\mathcal{A}_1 \cup \mathcal{A}_2) = \sigma(\mathcal{C})$ where $\mathcal{C} = \{A_1 \cup A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}$.