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Solution 1: In the above Ordinary Differential Equation (ODE), the coefficients are constant. We first
check if x : [0,∞) → R given by x(t) = eλt, for some λ ∈ R is a solution (why ?). Clearly x is twice
differentiable and if it is a solution then

eλt(λ2 − 4λ+ 13) = 0, ∀ t > 0
if and only if

λ2 − 4λ+ 13 = 0

This would imply that λ = 2 + 3i or 2 − 3i and is not real. Consequently this provides two candidates
(non-solutions):

x1(t) = e2t(cos(3t) + i sin(3t)) or x1(t) = e2t(cos(3t)− i sin(3t))

However, we can try
y1(t) = x1(t) + x2(t) = 2e2t cos(3t)

and
y2(t) = x1(t)− x2(t) = 2e2t sin(3t)).

as candidates. We proceed to check if they are solutions and linearly independent. Observer

dy1

dt
(t) = 2y1(t)− 6e2t sin(3t) = 4e2t cos(3t)− 6e2t sin(3t),

d2y1

dt2
(t) = 2(2y1(t)− 6e2t sin(3t))− 18e2t cos(3t)− 12e2t sin(3t) = −24e2t sin(3t)− 10e2t cos(3t)

d2y1

dt2
(t)− 4

dy1

dt
(t) + 13y1(t) = −24e2t sin(3t)− 10e2t cos(3t)

−4(4e2t cos(3t)− 6e2t sin(3t)) + 26e2t cos(3t)

= 0
dy2

dt
(t) = 2y2(t) + 6e2t cos(3t) = 4e2t sin(3t) + 6e2t cos(3t),

d2y2

dt2
(t) = 2(2y2(t) + 6e2t cos 3t)) + 12e2t cos(3t)− 18e2t sin(3t) = −10e2t sin(3t) + 24e2t cos(3t)

d2y2

dt2
(t)− 4

dy2

dt
(t) + 13y1(t) = −10e2t sin(3t) + 24e2t cos(3t)

−4(4e2t sin(3t) + 6e2t sin(3t)) + 26e2t sin(3t)

= 0

Hence y1 and y2 are solutions to the ODE. Further,

ay1(t) + by2(t) = 0∀ t ≥ 0

Evaluating the above at t = 0 and t = π
2 we get that a = b = 0. Therefore they are linearly independent

solutions. We know by Theorem 0.1 the solution set is two-dimensional. Hence any general solution is of
the form

y(t) = ay1(t) + by2(t) = e2t(2a cos(3t) + 2b sin(3t)),

where a, b ∈ R and t ≥ 0.

Solution 2: Let x : [0,∞) → R be the amount owed by Munuram. The initial avalue problem satisfied
by x is given by

dx

dt
=

x

10
− 1200, ∀ t > 0



with x(0) = 10000.

Applying Theorem 0.2 with p(t) = − 1
10 for all t ≥ 0 and q(t) = 1200 for all t ≥ 0, we know that the

unique solution to the above initial value problem is given by

x(t) = e−
t

10

[

10000−
∫ t

0

e
s

10 (−1200)ds

]

= 12000− 2000e
t

10 .

We need to find T such that x(T ) = 0. This would imply

12000− 2000e
T

10 = 0, and T = 10ln 6.

Solution 3 (a) Following the method to solve Bernoulli equations, assume that a solution y exists and
is non-zero for all t > 0. Let y(0) = α > 0. Define z : [0,∞) → R such that z(t) = 1

[y(t)]2 for all t ≥ 0.

Then, z satisfies the initial value problem given by

dz

dt
=

−2

[y(t)]3
dy

dt
=

−2

[y(t)]3
(y(9− y2) = −18z + 2,

for all t > 0 and z(0) = 1
α2 > 0. By Theorem 0.2, we know that there is a unique solution given by

z(t) = e−18t

[

1

α2
−
∫ t

0

e18s(−2)ds

]

=
e−18t

α2
+

1

9
(1− e−18t),

for all t ≥ 0. Clearly by inspection as 0 < e−18t ≤ 1 for all t ≥ 0, we have that z(t) > 0 for all t ≥ 0.
Then by Theorem 0.3 we know that y(t) = 1√

z(t)
, t ≥ 0 (What if y(0) < 0?) is the unique solution to the

initial value problem
dy

dt
= y(9− y2), t > 0

and y(0) = α > 0. Therefore

y(t) =

(

e−18t

α2
+

1

9
(1− e−18t)

)− 1

2

=
3α

√

α2 + (9− α2)e−18t

for t ≥ 0, is the unique solution.

Observe that: if α = 3 then y(t) = 3 for all t ≥ 0; if α > 3 then 3 ≤ y(t) ≤ α for t ≥ 0; and if α < 3 then
α ≤ y(t) ≤ 3 for t ≥ 0. Therefore there exists positive constants c1, c2 (depending on α) such that

c1 ≤ z(t) ≤ c2 and c1 ≤ y(t) ≤ c2, for all t ≥ 0.

So,

| y(t)− 3 | ≤ c3 | [y(t)]2 − 9 |

= c3 | 1

z(t)
− 9 |

≤ c4 | z(t)− 1

9
|

≤ c4 | 1

α2
− 1

9
| e−18t

for some positive constant c3and c4.



Let ǫ > 0 be given. Let N ∈ N be such that N ≥ 18 ln( 1
ǫ
). Then for all t > N , we have e−18t < ǫ.

Therefore for t > N , we have

| y(t)− 3 | ≤ c4 | 1

α2
− 1

9
| e−18t

< c4 | 1

α2
− 1

9
| ǫ.

As c4 > 0, α > 0 are constants and ǫ > 0 is arbitrary we can conclude that

lim
t→∞

y(t) = 3.

(b) Let y1(t) = 0 for all t ≥ 0. Clearly y1(t) =
∫ t

0
dsy1(s)(9 − y1(s)

2) for all t ≥ 0. Therefore the y1 is
a solution to the iniital value problem with y(0) = 0. Suppose y2 is another solution to the initial value
problem such that y2(t0) = β > 0 for some t0 > 0. Let

a = sup{0 ≤ s < t0 : y(s) = 0}.

By continuity of y2 we have y2(a) = 0, a < t0, and ∃ ǫ > 0 such that

y2(s) > 0 for s ∈ (a, t0 + ǫ).

Define z2 : (a, t0 + ǫ) → R given by

zz(s) =
1

[y2(s)]2
for s ∈ (a, t0 + ǫ).

Note z2 solves the initial value problem

dz

dt
= −18z + 2 s ∈ (a, t0 + ǫ)

z(t0) =
1

β2

Using Theorem 0.4 it is clear that z2 agrees with unique solution of the above intial value problem w.
We now observe for s ∈ (a, t0 + ǫ)

y2(s) =
1

√

z2(s)
=

1
√

w(s)
.

By definition of a solution lims↓a w(s) = w(a) ∈ [0,∞). However this will imply

0 = y2(a) = lim
s↓a

y2(s) = lim
s↓a

1
√

w(s)
=

1
√

w(a)
∈ (0,∞) ∪ {∞}.

Hence we have shown that y1(t) = 0 for all t ≥ 0 is the unique solution to the initial value problem. (How
to handle β < 0 ?)



Definition 0.1 Let (α, β) be a bounded open interval in R. We say x : [α, β] → R is a solution to

h(t, x, x′, x′′, . . . x(n)) = 0, (1)

for some h : [α, β]× R
n if x satisfies (1) for all t ∈ (α, β) and x ∈ C([α, β])

Theorem 0.1 Let p, q ∈ C([0,∞)). The set of solutions to the second order linear homogeneous equation

x′′ + p(t)x′(t) + q(t)x(t) = 0,

for t > 0 is a 2-dimensional real vector space.

Theorem 0.2 Let p, q ∈ C[0,∞). Then the general solution to the first order linear ODE given by

x′ + px+ q = 0,

for t > 0 is given by

x(t) = e−
∫

t

0
p(s)ds[K −

∫ t

0

e
∫

s

0
p(r)drq(s)ds], t > 0

with K ∈ R.

Theorem 0.3 Let a > 0, p, q ∈ C[0,∞). Assume that the solution z : [0,∞) → R to

z′ − 2p(t)z(t)− 2q(t) = 0, t > 0 and z(0) = a−2

satisfies z(t) > 0 for all t ≥ 0. Then x : [0,∞) → R given by x(t) = 1√
z(t)

is the unique solution to

z′ + p(t)x(t) + q(t)x3(t) = 0, t > 0 and x(0) = a

Theorem 0.4 Let (α, β) be an open interval in R. Let f : (α, β) × R → R be continuous and Lipschitz
in x uniformly over compact subsets of (α, β). Let t0 ∈ (α, β). Then the initial value problem

x′(t) = f(t, x(t)),

for t ∈ (α, β) and x(t0) = x0 ∈ R has a unique solution that is continuously differentiable in (α, β).


