September 11th, 2013 Solutions
Differential Equations - Midterm - Semester IT 10/11

Solution 1: In the above Ordinary Differential Equation (ODE), the coefficients are constant. We first
check if z : [0,00) — R given by z(t) = e, for some A\ € R is a solution (why ?). Clearly z is twice
differentiable and if it is a solution then

eMA? 4N +13) = 0, V>0
if and only if
M —4X+13 = 0

This would imply that A = 2 + 3i or 2 — 3i and is not real. Consequently this provides two candidates
(non-solutions):
x1(t) = e®*(cos(3t) + isin(3t)) or z1(t) = e**(cos(3t) — isin(3t))
However, we can try
y1(t) = @1 (t) + 2o(t) = 2 cos(3t)
and
Ya(t) = 21 (t) — 2o(t) = 2e* sin(3t)).

as candidates. We proceed to check if they are solutions and linearly independent. Observer

d
%(t) = 2y1(t) — 6e* sin(3t) = 4e? cos(3t) — 62 sin(3t),
d2
dtyzl (t) = 2(2y1(t) — 6e* sin(3t)) — 18e? cos(3t) — 12e* sin(3t) = —24e?! sin(3t) — 10> cos(3t)
d2y1 dyl 2 . 2
72 (t) — 4;(0 + 13y1(t) = —24e*" sin(3t) — 10e** cos(3t)
—4(4€?" cos(3t) — 6e?' sin(3t)) + 26€*" cos(3t)
=0
d
%(i) = 2y5(t) + 66 cos(3t) = 4e? sin(3t) + 6e2t cos(3t),
d2
dtyj (t) = 2(2ya2(t) + 6€* cos3t)) + 12e* cos(3t) — 18e* sin(3t) = —10e* sin(3t) 4 24e>* cos(3t)
d*ya

(t) — 4@@) + 13y1 (t) = —10e* sin(3t) + 242 cos(3t)

dt? dt

—4(4e* sin(3t) + 6 sin(3t)) + 262! sin(3t)
=0

Hence y; and ys are solutions to the ODE. Further,

Evaluating the above at t = 0 and t = § we get that a = b = 0. Therefore they are linearly independent
solutions. We know by Theorem 0.1 the solution set is two-dimensional. Hence any general solution is of
the form

y(t) = ayi(t) + byz(t) = e*(2a cos(3t) + 2bsin(3t)),
where a,b € R and t > 0.

Solution 2: Let x : [0,00) — R be the amount owed by Munuram. The initial avalue problem satisfied
by x is given by

dx T
— = ——12 t
i 10 00, V>0



with z(0) = 10000.

Applying Theorem 0.2 with p(t) = —% for all ¢ > 0 and ¢(t) = 1200 for all ¢ > 0, we know that the
unique solution to the above initial value problem is given by

t

t
o(t) =1 {10000 / et (— 1200)ds] = 12000 — 2000¢ 7.
0

We need to find T such that x(7") = 0. This would imply

12000 — 2000e10 = 0, and T = 10In6.

Solution 3 (a) Following the method to solve Bernoulli equations, assume that a solution y exists and
is non-zero for all ¢ > 0. Let y(0) = o > 0. Define z : [0,00) — R such that z(t) = W for all t > 0.
Then, z satisfies the initial value problem given by

dz -2 dy -2

OO R

for all ¢ > 0 and z(0) = % > 0. By Theorem 0.2, we know that there is a unique solution given by

_ocse | L b les B e | Py
z(t)y=e e (=2)ds| = —5—+ (1 —e %),
0 (0%

o? 9

for all t > 0. Clearly by inspection as 0 < e~¥" < 1 for all ¢ > 0, we have that z(t) > 0 for all ¢ > 0.
Then by Theorem 0.3 we know that y(t) = \/%,t > 0 (What if y(0) < 07) is the unique solution to the

dy
dt

initial value problem

y(9—9%), t>0

and y(0) = a > 0. Therefore
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\/a2 — a2 e 18t

for ¢ > 0, is the unique solution.

Observe that: if & = 3 then y(¢) = 3 for all ¢ > 0; if & > 3 then 3 < y(¢) < a for t > 0; and if & < 3 then
a < y(t) <3 for t > 0. Therefore there exists positive constants ¢y, ¢ (depending on «) such that

1 < z(t) < cgand ¢ < y(t) < cg, for all t > 0.
So,
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for some positive constant czand c4.



Let € > 0 be given. Let N € N be such that N > 18In(%). Then for all ¢ > N, we have e~ '8 < e.
Therefore for ¢t > N, we have

1 1 —18¢
ly(t) =3] < C4|§—§\e

- | 1 1 |
G| ——=|e€
a2 o
As ¢4 > 0, > 0 are constants and € > 0 is arbitrary we can conclude that

lim y(t) = 3.

t—o0

(b) Let y1(t) = 0 for all t > 0. Clearly y; (¢ fo dsy1(s)(9 — y1(s)?) for all t > 0. Therefore the y; is
a solution to the iniital value problem with y(O) = 0. Suppose ys is another solution to the initial value
problem such that y2(tg) = 5 > 0 for some tg > 0. Let

a=sup{0 <s <ty:y(s) =0}
By continuity of yo we have ys(a) = 0,a < to, and Je > 0 such that
y2(s) > 0 for s € (a,to + ¢€).

Define 25 : (a,ty + €) — R given by

1
2,(s) = ———— for s € (a,tg +¢€).
)= e oS (@t re)
Note zo solves the initial value problem
d
- 18:42se (a,to+¢)
dt
1
z(to) = 2

Using Theorem 0.4 it is clear that z, agrees with unique solution of the above intial value problem w.

We now observe for s € (a,tg + €)
1 1

v = S T Ve

By definition of a solution lim, |, w(s) = w(a) € [0, 00). However this will imply

1
0 =ya(a) =limya(s) = hm
sla sla /w A/w

Hence we have shown that y;(¢) = 0 for all ¢ > 0 is the unique solution to the initial value problem. (How
to handle 5 < 0 ?)

(0,00) U {o0}.



Definition 0.1 Let (o, 8) be a bounded open interval in R. We say x : [, ] — R is a solution to
h(t,z, o' 2", ... ™) =0, (1)

for some h: [a, B] X R™ if x satisfies (1) for all t € (o, B) and x € C(|a, 5])

Theorem 0.1 Let p,q € C(]0,00)). The set of solutions to the second order linear homogeneous equation
z” +p(t)2'(t) + q(t)z(t) = 0,

fort >0 is a 2-dimensional real vector space.

Theorem 0.2 Let p,q € C[0,00). Then the general solution to the first order linear ODE given by
¥ +pr+q=0,
fort >0 is given by
t
z(t) = e~ Jo P3| —/ elo Py (s)ds], >0
0

with K € R.

Theorem 0.3 Let a > 0,p,q € C[0,00). Assume that the solution z : [0,00) — R to
2 —2p(t)z(t) — 2q(t) = 0,t > 0 and 2(0) = a2

satisfies z(t) > 0 for all t > 0. Then x : [0,00) — R given by x(t) = —A— is the unique solution to

\V z(t)

2+ p(t)a(t) + q(t)z3(t) = 0,t > 0 and 2(0) = a

Theorem 0.4 Let (o, 8) be an open interval in R. Let [ : (a,5) x R — R be continuous and Lipschitz
in x uniformly over compact subsets of (a, B). Let to € (e, 8). Then the initial value problem

a'(t) = f(t,2(t)),

fort € (a,B) and x(ty) = zg € R has a unique solution that is continuously differentiable in (c, B).



