Solution 1: In the above Ordinary Differential Equation (ODE), the coefficients are constant. We first check if $x:[0, \infty) \rightarrow \mathbb{R}$ given by $x(t)=e^{\lambda t}$, for some $\lambda \in \mathbb{R}$ is a solution (why ?). Clearly x is twice differentiable and if it is a solution then

$$
\begin{aligned}
e^{\lambda t}\left(\lambda^{2}-4 \lambda+13\right) & =0, \forall t>0 \\
\text { if and only if } & \\
\lambda^{2}-4 \lambda+13 & =0
\end{aligned}
$$

This would imply that $\lambda=2+3 i$ or $2-3 i$ and is not real. Consequently this provides two candidates (non-solutions):

$$
x_{1}(t)=e^{2 t}(\cos (3 t)+i \sin (3 t)) \text { or } x_{1}(t)=e^{2 t}(\cos (3 t)-i \sin (3 t))
$$

However, we can try

$$
y_{1}(t)=x_{1}(t)+x_{2}(t)=2 e^{2 t} \cos (3 t)
$$

and

$$
\left.y_{2}(t)=x_{1}(t)-x_{2}(t)=2 e^{2 t} \sin (3 t)\right)
$$

as candidates. We proceed to check if they are solutions and linearly independent. Observer

$$
\begin{aligned}
\frac{d y_{1}}{d t}(t)= & 2 y_{1}(t)-6 e^{2 t} \sin (3 t)=4 e^{2 t} \cos (3 t)-6 e^{2 t} \sin (3 t) \\
\frac{d^{2} y_{1}}{d t^{2}}(t)= & 2\left(2 y_{1}(t)-6 e^{2 t} \sin (3 t)\right)-18 e^{2 t} \cos (3 t)-12 e^{2 t} \sin (3 t)=-24 e^{2 t} \sin (3 t)-10 e^{2 t} \cos (3 t) \\
& \begin{aligned}
& \frac{d^{2} y_{1}}{d t^{2}}(t)-4 \frac{d y_{1}}{d t}(t)+13 y_{1}(t)=-24 e^{2 t} \sin (3 t)-10 e^{2 t} \cos (3 t) \\
&-4\left(4 e^{2 t} \cos (3 t)-6 e^{2 t} \sin (3 t)\right)+26 e^{2 t} \cos (3 t) \\
&=0
\end{aligned} \\
& \\
\frac{d y_{2}}{d t}(t)= & 2 y_{2}(t)+6 e^{2 t} \cos (3 t)=4 e^{2 t} \sin (3 t)+6 e^{2 t} \cos (3 t) \\
\frac{d^{2} y_{2}}{d t^{2}}(t)= & \left.2\left(2 y_{2}(t)+6 e^{2 t} \cos 3 t\right)\right)+12 e^{2 t} \cos (3 t)-18 e^{2 t} \sin (3 t)=-10 e^{2 t} \sin (3 t)+24 e^{2 t} \cos (3 t) \\
& \begin{array}{r}
\frac{d^{2} y_{2}}{d t^{2}}(t)-4 \frac{d y_{2}}{d t}(t)+13 y_{1}(t)=-10 e^{2 t} \sin (3 t)+24 e^{2 t} \cos (3 t) \\
\\
\end{array} \quad-4\left(4 e^{2 t} \sin (3 t)+6 e^{2 t} \sin (3 t)\right)+26 e^{2 t} \sin (3 t) \\
& =0
\end{aligned}
$$

Hence y_{1} and y_{2} are solutions to the ODE. Further,

$$
a y_{1}(t)+b y_{2}(t)=0 \forall t \geq 0
$$

Evaluating the above at $t=0$ and $t=\frac{\pi}{2}$ we get that $a=b=0$. Therefore they are linearly independent solutions. We know by Theorem 0.1 the solution set is two-dimensional. Hence any general solution is of the form

$$
y(t)=a y_{1}(t)+b y_{2}(t)=e^{2 t}(2 a \cos (3 t)+2 b \sin (3 t))
$$

where $a, b \in \mathbb{R}$ and $t \geq 0$.

Solution 2: Let $x:[0, \infty) \rightarrow \mathbb{R}$ be the amount owed by Munuram. The initial avalue problem satisfied by x is given by

$$
\frac{d x}{d t}=\frac{x}{10}-1200, \forall t>0
$$

with $x(0)=10000$.
Applying Theorem 0.2 with $p(t)=-\frac{1}{10}$ for all $t \geq 0$ and $q(t)=1200$ for all $t \geq 0$, we know that the unique solution to the above initial value problem is given by

$$
x(t)=e^{-\frac{t}{10}}\left[10000-\int_{0}^{t} e^{\frac{s}{10}}(-1200) d s\right]=12000-2000 e^{\frac{t}{10}}
$$

We need to find T such that $x(T)=0$. This would imply

$$
12000-2000 e^{\frac{T}{10}}=0, \quad \text { and } T=10 \ln 6
$$

Solution 3 (a) Following the method to solve Bernoulli equations, assume that a solution y exists and is non-zero for all $t>0$. Let $y(0)=\alpha>0$. Define $z:[0, \infty) \rightarrow \mathbb{R}$ such that $z(t)=\frac{1}{[y(t)]^{2}}$ for all $t \geq 0$. Then, z satisfies the initial value problem given by

$$
\frac{d z}{d t}=\frac{-2}{[y(t)]^{3}} \frac{d y}{d t}=\frac{-2}{[y(t)]^{3}}\left(y\left(9-y^{2}\right)=-18 z+2\right.
$$

for all $t>0$ and $z(0)=\frac{1}{\alpha^{2}}>0$. By Theorem 0.2 , we know that there is a unique solution given by

$$
z(t)=e^{-18 t}\left[\frac{1}{\alpha^{2}}-\int_{0}^{t} e^{18 s}(-2) d s\right]=\frac{e^{-18 t}}{\alpha^{2}}+\frac{1}{9}\left(1-e^{-18 t}\right)
$$

for all $t \geq 0$. Clearly by inspection as $0<e^{-18 t} \leq 1$ for all $t \geq 0$, we have that $z(t)>0$ for all $t \geq 0$. Then by Theorem 0.3 we know that $y(t)=\frac{1}{\sqrt{z(t)}}, t \geq 0$ (What if $y(0)<0$?) is the unique solution to the initial value problem

$$
\frac{d y}{d t}=y\left(9-y^{2}\right), t>0
$$

and $y(0)=\alpha>0$. Therefore

$$
y(t)=\left(\frac{e^{-18 t}}{\alpha^{2}}+\frac{1}{9}\left(1-e^{-18 t}\right)\right)^{-\frac{1}{2}}=\frac{3 \alpha}{\sqrt{\alpha^{2}+\left(9-\alpha^{2}\right) e^{-18 t}}}
$$

for $t \geq 0$, is the unique solution.
Observe that: if $\alpha=3$ then $y(t)=3$ for all $t \geq 0$; if $\alpha>3$ then $3 \leq y(t) \leq \alpha$ for $t \geq 0$; and if $\alpha<3$ then $\alpha \leq y(t) \leq 3$ for $t \geq 0$. Therefore there exists positive constants c_{1}, c_{2} (depending on α) such that

$$
c_{1} \leq z(t) \leq c_{2} \text { and } c_{1} \leq y(t) \leq c_{2}, \text { for all } t \geq 0
$$

So,

$$
\begin{aligned}
|y(t)-3| & \leq c_{3}\left|[y(t)]^{2}-9\right| \\
& =c_{3}\left|\frac{1}{z(t)}-9\right| \\
& \leq c_{4}\left|z(t)-\frac{1}{9}\right| \\
& \leq c_{4}\left|\frac{1}{\alpha^{2}}-\frac{1}{9}\right| e^{-18 t}
\end{aligned}
$$

for some positive constant c_{3} and c_{4}.

Let $\epsilon>0$ be given. Let $N \in \mathbb{N}$ be such that $N \geq 18 \ln \left(\frac{1}{\epsilon}\right)$. Then for all $t>N$, we have $e^{-18 t}<\epsilon$. Therefore for $t>N$, we have

$$
\begin{aligned}
|y(t)-3| & \leq c_{4}\left|\frac{1}{\alpha^{2}}-\frac{1}{9}\right| e^{-18 t} \\
& <c_{4}\left|\frac{1}{\alpha^{2}}-\frac{1}{9}\right| \epsilon
\end{aligned}
$$

As $c_{4}>0, \alpha>0$ are constants and $\epsilon>0$ is arbitrary we can conclude that

$$
\lim _{t \rightarrow \infty} y(t)=3
$$

(b) Let $y_{1}(t)=0$ for all $t \geq 0$. Clearly $y_{1}(t)=\int_{0}^{t} d s y_{1}(s)\left(9-y_{1}(s)^{2}\right)$ for all $t \geq 0$. Therefore the y_{1} is a solution to the iniital value problem with $y(0)=0$. Suppose y_{2} is another solution to the initial value problem such that $y_{2}\left(t_{0}\right)=\beta>0$ for some $t_{0}>0$. Let

$$
a=\sup \left\{0 \leq s<t_{0}: y(s)=0\right\}
$$

By continuity of y_{2} we have $y_{2}(a)=0, a<t_{0}$, and $\exists \epsilon>0$ such that

$$
y_{2}(s)>0 \text { for } s \in\left(a, t_{0}+\epsilon\right) .
$$

Define $z_{2}:\left(a, t_{0}+\epsilon\right) \rightarrow \mathbb{R}$ given by

$$
z_{z}(s)=\frac{1}{\left[y_{2}(s)\right]^{2}} \text { for } s \in\left(a, t_{0}+\epsilon\right)
$$

Note z_{2} solves the initial value problem

$$
\begin{aligned}
\frac{d z}{d t} & =-18 z+2 s \in\left(a, t_{0}+\epsilon\right) \\
z\left(t_{0}\right) & =\frac{1}{\beta^{2}}
\end{aligned}
$$

Using Theorem 0.4 it is clear that z_{2} agrees with unique solution of the above intial value problem w. We now observe for $s \in\left(a, t_{0}+\epsilon\right)$

$$
y_{2}(s)=\frac{1}{\sqrt{z_{2}(s)}}=\frac{1}{\sqrt{w(s)}}
$$

By definition of a solution $\lim _{s \downarrow a} w(s)=w(a) \in[0, \infty)$. However this will imply

$$
0=y_{2}(a)=\lim _{s \downarrow a} y_{2}(s)=\lim _{s \downarrow a} \frac{1}{\sqrt{w(s)}}=\frac{1}{\sqrt{w(a)}} \in(0, \infty) \cup\{\infty\}
$$

Hence we have shown that $y_{1}(t)=0$ for all $t \geq 0$ is the unique solution to the initial value problem. (How to handle $\beta<0$?)

Definition 0.1 Let (α, β) be a bounded open interval in \mathbb{R}. We say $x:[\alpha, \beta] \rightarrow \mathbb{R}$ is a solution to

$$
\begin{equation*}
h\left(t, x, x^{\prime}, x^{\prime \prime}, \ldots x^{(n)}\right)=0 \tag{1}
\end{equation*}
$$

for some $h:[\alpha, \beta] \times \mathbb{R}^{n}$ if x satisfies (1) for all $t \in(\alpha, \beta)$ and $x \in C([\alpha, \beta])$

Theorem 0.1 Let $p, q \in C([0, \infty))$. The set of solutions to the second order linear homogeneous equation

$$
x^{\prime \prime}+p(t) x^{\prime}(t)+q(t) x(t)=0
$$

for $t>0$ is a 2-dimensional real vector space.

Theorem 0.2 Let $p, q \in C[0, \infty)$. Then the general solution to the first order linear $O D E$ given by

$$
x^{\prime}+p x+q=0
$$

for $t>0$ is given by

$$
x(t)=e^{-\int_{0}^{t} p(s) d s}\left[K-\int_{0}^{t} e^{\int_{0}^{s} p(r) d r} q(s) d s\right], t>0
$$

with $K \in \mathbb{R}$.

Theorem 0.3 Let $a>0, p, q \in C[0, \infty)$. Assume that the solution $z:[0, \infty) \rightarrow \mathbb{R}$ to

$$
z^{\prime}-2 p(t) z(t)-2 q(t)=0, t>0 \text { and } z(0)=a^{-2}
$$

satisfies $z(t)>0$ for all $t \geq 0$. Then $x:[0, \infty) \rightarrow \mathbb{R}$ given by $x(t)=\frac{1}{\sqrt{z(t)}}$ is the unique solution to

$$
z^{\prime}+p(t) x(t)+q(t) x^{3}(t)=0, t>0 \text { and } x(0)=a
$$

Theorem 0.4 Let (α, β) be an open interval in \mathbb{R}. Let $f:(\alpha, \beta) \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and Lipschitz in x uniformly over compact subsets of (α, β). Let $t_{0} \in(\alpha, \beta)$. Then the initial value problem

$$
x^{\prime}(t)=f(t, x(t)),
$$

for $t \in(\alpha, \beta)$ and $x\left(t_{0}\right)=x_{0} \in \mathbb{R}$ has a unique solution that is continuously differentiable in (α, β).

