## Due date: October 31st, 2013

1. Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Suppose $u \in C^{2}(\mathbb{R})$. Consider the transformation $x=r \cos (\theta)$ and $y=r \sin (\theta)$ such that $r>0,-\pi \leq \theta \leq \pi$. Let $v:[0, \infty) \times[-\pi, \pi] \rightarrow \mathbb{R}$ be given by

$$
v(r, \theta)=u(x, y)
$$

with $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Show that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial^{2} r}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}
$$

2. Let $d \geq 2, u: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Suppose $u \in C^{2}\left(\mathbb{R}^{d}\right)$. Let

$$
u(x)=v(|x|)
$$

where $v:[0, \infty) \rightarrow \mathbb{R}$ and $v \in C([0, \infty))$. Then show that

$$
\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}=\frac{\partial^{2} v}{\partial r^{2}}+\frac{d-1}{r} \frac{\partial v}{\partial r}
$$

3. Let $D=\left\{x \in \mathbb{R}^{2}: 1<|x|<2\right\}$. Solve the following Dirichlet problem.

$$
\begin{aligned}
\Delta u & =0, \text { if } x \in D \\
u(x) & =0, \text { if }|x|=1 \\
u(x) & =1, \text { if }|x|=2, x_{2}>0 \\
u(x) & =-1, \text { if }|x|=2, x_{2}<0
\end{aligned}
$$

(you may assume that the above problem has a unique solution).
4. Find $u:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial u}{\partial t}=K \frac{\partial^{2} u}{\partial^{2} x}, t>0, x \in \mathbb{R} .
$$

with initial value

$$
\begin{equation*}
u(0, x)=T 1_{-1<x<0}+S 1_{0<x<1}+\frac{S+T}{2} 1_{x=0} \tag{1}
\end{equation*}
$$

(you may assume that the above problem has a unique bounded solution).
5. Justify the following statement: Let $D=\left\{x \in \mathbb{R}^{2}:|x| \leq 1\right\}$. Solving the Dirichlet problem:

$$
\begin{aligned}
\Delta u & =0, \text { if } x \in D \\
& =g(\theta), \text { if }|x|=1, x=(1, \theta),-\pi \leq \theta<\pi
\end{aligned}
$$

ie equivalent to obtaining the fourier series expansion for $g$.

## Correction from Hw 7:

3. Find $u:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial^{2} x}, t>0, x \in \mathbb{R}
$$

with initial value $u(0, x)=0$ and $\frac{\partial u}{\partial t}(0, x)=4 \cos (5 x)$.
4. Find $u:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial^{2} u}{\partial^{2} t}=\frac{\partial^{2} u}{\partial^{2} x}+\beta(t) \alpha(x), t>0, x \in \mathbb{R} .
$$

with initial value $u(0, x)=f(x)$ and $\frac{\partial u}{\partial t}(0, x)=g(x)$. Assume that $f, g, \alpha$ are linear functions and $\beta$ is continuous.

