Due date: October 17th, 2013

1. Let $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} functions. Show that the following

$$
u_{t}+b u_{x}=f, t>0, x \in R u(0, x)=g(x)
$$

has a unique solution given by

$$
u(t, x)=g(x-t b)+\int_{0}^{t} f(s, x+(s-t) b) d s
$$

2. Using the method of characteristics solve :
(a) $x u_{y}-y u_{x}=u, x>0, y>0 \in \mathbb{R}, \quad u(x, 0)=g(x), x \in \mathbb{R}$
(b) $\quad u_{x}+x u_{y}=u, x>1, y \in \mathbb{R}, \quad u(1, y)=h(y)$
(c) $2 x t u_{x}+u_{t}=u, t>0, x \in \mathbb{R} \quad u(0, x)=x$
(d) $\quad u_{x}+\frac{y}{2} u_{y}=u, x \in \mathbb{R}, y>e^{x}, \quad u\left(x, e^{x}\right)=1$
3. Find $u:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial^{2} x}, t>0, x \in \mathbb{R} .
$$

with initial value $u(0, x)=0$ and $\frac{\partial u}{\partial t}(0, x)=4 \cos (5 x)$.
4. Suppose $\alpha, f: \mathbb{R} \rightarrow \mathbb{R}$ and $\beta:[0, \infty) \rightarrow \mathbb{R}$ are C^{1} functions. Find $u:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial^{2} u}{\partial^{2} t}=\frac{\partial^{2} u}{\partial^{2} x}+\beta(t) \alpha(x), t>0, x \in \mathbb{R} .
$$

with initial value $u(0, x)=f(x)$ and $\frac{\partial u}{\partial t}(0, x)=g(x)$.

