Due date: September 26th, 2013

1. Let $x:[0, \infty) \rightarrow \mathbb{R}$ be a solution to the second order differential equation

$$
\frac{d^{2} x}{d t^{2}}(t)+r(t)=0
$$

with r being a continuous function. Find the two linearly independent solutions of the above, the corresponding Green function, and the general solution to the equation.
2. Let $x:[0, \infty) \rightarrow \mathbb{R}$ be a solution to the second order differential equation

$$
\frac{d^{2} x}{d t^{2}}(t)-x(t)+r(t)=0
$$

with r being a continuous function. Find the two linearly independent solutions of the above, the corresponding Green function, and the general solution to the equation.
3. Let $x:[0, \infty) \rightarrow \mathbb{R}$ be a solution to the second order differential equation

$$
\frac{d^{2} x}{d t^{2}}(t)+x(t)-2 \cos (t)=0
$$

Find the two linearly independent solutions of the above, the corresponding Green function, and the general solution to the equation.
4. Find a particular solution for each of the following ODEs:

$$
\begin{gathered}
\frac{d^{2} x}{d t^{2}}(t)+5 \frac{d x}{d t}(t)+4 x(t)=e^{-3 t} \\
\frac{d^{2} x}{d t^{2}}(t)+5 \frac{d x}{d t}(t)+4 x(t)=\cos (2 t) \\
\frac{d^{2} x}{d t^{2}}(t)+5 \frac{d x}{d t}(t)+4 x(t)=4+5 t^{2}
\end{gathered}
$$

5. Write down the general solution for each of the following ODEs:

$$
\begin{gathered}
\frac{d x}{d t}(t)+2 x(t)=2 e^{-3 t}+4 \sin (3 t) \\
\frac{d^{2} x}{d t^{2}}(t)+5 \frac{d x}{d t}(t)+4 x(t)=e^{-3 t}+4 t+5 t^{2}
\end{gathered}
$$

