Problems due:None

Due date: August 29th, 2013

1. Let $r>0, k>0$. Let $x_{1}:[0, \infty) \rightarrow \mathbb{R}$ and $x_{2}:[0, \infty) \rightarrow \mathbb{R}$ be the two solutions to the IVP

$$
\frac{d x}{d t}(t)=r\left(1-\frac{x(t)}{k}\right) x(t), t>0, \text { and }
$$

$x_{1}(0)=a, x_{2}(0)=b$. If $a>b>0$ then show that $x^{1}(t)>x^{2}(t)$ for all $t>0$. In addtion show that $x(t)=0$ for all $t \geq 0$ is a solution ${ }^{1}$ of the above ordinary differential equation if $x(0)=0$.
2. Let $X, f:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be continuous with $X(0)=a \in \mathbb{R}^{2}$. Show that

$$
\frac{d X}{d t}(t)=f(t, X(t)), \forall t>0
$$

if and only if

$$
X(t)=a+\int_{0}^{t} f(s, X(s)) d s, \forall t>0
$$

3. Let $f:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a continuous function such that for each $M>0$ there exists a constant $K_{M}>0$ such that

$$
f(t, x)-f(t, y) \leq K_{M}|x-y|
$$

for all $x, y \in \mathbb{R}^{2}$ and $t \in[0, M]$. Let $a \in \mathbb{R}^{2}$ then there is a unique solution to

$$
\frac{d X}{d t}(t)=f(t, X(t)), \forall t>0
$$

and $X(0)=a$.
Hint: Imitate the proof of the one-dimensional case with suitable modifications.
4. Let $A_{2 \times 2}$ be a 2×2-matrix of real numbers. Consider the linear system

$$
\frac{d X}{d t}(t)=A X(t), \forall t>0
$$

Show that $e^{t A}$ is a fundamental matrix for the linear system.
5. Let $a>0$. Consider the ordinary differential equation

$$
\frac{d x}{d t}(t)=\frac{1}{4}-a x+x^{2}, t>0
$$

What are the values of a for which x will stay finite for all $t>0$? Do the solutions approach an equilibrium?

[^0]
[^0]: ${ }^{1}$ Extra Credit: Can you show it is the unique solution?

