Problems due: 1

Due date: August 8th, 2013

1. Let $a, b \in \mathbb{R} \cup \infty,-\infty$ with $a<b$. Let $f:(a, b) \times \mathbb{R}$ be a continuous function and Lipschitz continuous in x uniformly over compact subsets of t^{1}. Let $t_{0} \in(a, b)$ and $a_{0} \in \mathbb{R}$. Show that the initial value problem

$$
\begin{aligned}
\frac{d x}{d t}(t) & =f(t, x(t)) \quad t \in(a, b) \\
x\left(t_{0}\right) & =a_{0}
\end{aligned}
$$

Further show that the solution is continuously differentiable in (a, b).
2. Let $a, b \in \mathbb{R} \cup\{\infty,-\infty\}$ with $a<b$. Let $f:(a, b) \times \mathbb{R}$ be a continuous function and Lipschitz continuous in x uniformly over compact subsets of t. Suppose y, z are any two (distinct) solutions to

$$
\frac{d x}{d t}(t)=f(t, x(t)) \quad t \in(a, b)
$$

then y and z cannot intersect in (a, b).
3. Let $a>0, \lambda>0, b \in \mathbb{R}$. Let x be a solution to

$$
\frac{d x}{d t}(t)=-a x(t)+b e^{-\lambda t} \quad t>0
$$

Find the $\lim _{t \rightarrow \infty} x(t)$.

[^0]for all $x, y \in(a, b)$ and $t \in M$.

[^0]: ${ }^{1}$ i.e for any compact subset of (a, b) (say) $\mathrm{M}, \exists K_{M}$ such that

 $$
 |f(t, x)-f(t, y)| \leq K_{M}|x-y|
 $$

