Problems due: 1 Due date: August 8th, 2013

1. Let $a, b \in \mathbb{R} \cup \infty, -\infty$ with a < b. Let $f : (a, b) \times \mathbb{R}$ be a continuous function and Lipschitz continuous in x uniformly over compact subsets of t^1 . Let $t_0 \in (a, b)$ and $a_0 \in \mathbb{R}$. Show that the initial value problem

$$\frac{dx}{dt}(t) = f(t, x(t)) \quad t \in (a, b)$$
$$x(t_0) = a_0$$

Further show that the solution is continuously differentiable in (a, b).

2. Let $a, b \in \mathbb{R} \cup \{\infty, -\infty\}$ with a < b. Let $f : (a, b) \times \mathbb{R}$ be a continuous function and Lipschitz continuous in x uniformly over compact subsets of t. Suppose y, z are any two (distinct) solutions to

$$\frac{dx}{dt}(t) = f(t, x(t)) \quad t \in (a, b)$$

then y and z cannot intersect in (a, b).

3. Let $a > 0, \lambda > 0, b \in \mathbb{R}$. Let x be a solution to

$$\frac{dx}{dt}(t) = -ax(t) + be^{-\lambda t} \quad t > 0$$

Find the $\lim_{t\to\infty} x(t)$.

$$|f(t,x) - f(t,y)| \le K_M |x - y|$$

for all $x, y \in (a, b)$ and $t \in M$.

¹i.e for any compact subset of (a, b) (say) M, $\exists K_M$ such that