Problems due: None
Due date: August 1st, 2013

1. Let $a, b \in \mathbb{R}$ such that $a<b$. Show that $C([a, b])$ equipped with the metric via the sup-norm is a complete metric space.
2. Let (S, d) be a metric space and T be a contraction from S into S. Show that T^{k} is a contraction for all $k \geq 1$ and each is uniformly continuous.
3. Let $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Let $x: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a continuous function such that $x(0)=a \in \mathbb{R}$. Show that

$$
x(t)=a+\int_{0}^{t} f(s, x(s)) d s
$$

if and only if x is differentiable in $(0, \infty)$ and

$$
\frac{d}{d t} x(t)=f(t, x(t)), \forall t>0
$$

4. Show that any Lipschitz function on \mathbb{R} is uniformly continuous on \mathbb{R} and has linear growth. Conversely, suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable such that f^{\prime} is bounded, show that f is Lipschitz continuous.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=\sqrt{x}$. Show that f is not a Lipschitz continuous function on $[0, \infty)$.
6. Let $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$. Consider the initial value problem

$$
\frac{d}{d t} x(t)=f(t, x(t)), \forall t>0 \text { with } x(0)=a \in \mathbb{R}
$$

(a) Suppose $f(t, x) \equiv g(t)$ for some continuous g. Is it possible that the initial value problem does not have a unique solution?
(b) Suppose f is Lipschitz continuous in x-variable but not uniformly in t. What can you say about the solution set to the initial value problem ?
(c) Can you give an example of a continuous f such that the initial value problem does not have a solution?
7. Let (S, d) be a metric space and T be a map from S into S. Assume further that $d(T x, T y) \leq d(x, y)$ for all $x, y \in S$. Does it necessarily imply that T has a fixed point ? Suppose T has a fixed point, does it imply that it is unique.

