Theorem 1 Let $A, B, C \in \mathbb{R}$. Suppose $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} b_n = B$, and $\sum_{n=1}^{\infty} c_n = C$, where $c_n = \sum_{k=1}^{n} a_k b_{n-k+1}$. Then C = AB.

Proof: We begin with the following claim.

Claim: Suppose u_n is a bounded sequence. Then $\sum_{n=1}^{\infty} u_n x^n$ converges absolutely for $x \in [0,1)$. *Proof of Claim*: There exists an M, such that for all $n \geq N$,

$$\sum_{k=1}^{n} |u_k x^k| \le M \sum_{k=1}^{n} x^k \le \frac{M}{1-x}.$$

The claim follows easily.

By the above claim and the hypothesis of the Theorem, $h, g, f : [0, 1) \to \mathbb{R}$ given by

$$h(x) = \sum_{n=1}^{\infty} c_n x^{n+1}, \quad g(x) = \sum_{n=1}^{\infty} b_n x^n, \text{ and } f(x) = \sum_{n=1}^{\infty} a_n x^n$$

are well-defined and by result proved in class,

$$h(x) = f(x)g(x), \quad \forall x \in [0, 1).$$

Let $\epsilon > 0$ be given. Then there exists an $N \in \mathbb{N}$ such that

$$\max\{|A_n - A|, |B_n - B|, |C_n - C|\} < \epsilon \quad \forall n \ge N,$$

where $A_n = \sum_{k=1}^n a_k$, $B_n = \sum_{k=1}^n b_k$, and $C_n = \sum_{k=1}^n c_k$. Observe that for any $x \in [0,1)$,

$$|f(x) - A| = \left| \sum_{n=1}^{\infty} a_n x^n - A \right| = (1 - x) \left| \sum_{n=1}^{\infty} (A_n - A) x^n - A \right| \text{ (why ?)}$$

$$\leq (1 - x) \left(\sum_{n=1}^{N} |(A_n - A) x^n| + \sum_{n=N+1}^{\infty} |(A_n - A) x^n| + |A| \right)$$

$$\leq (1 - x) \left(\sum_{n=1}^{N} |A_n - A| + |A| \right) + \epsilon. \text{ (why ?)}$$

Similarly for all $x \in [0,1)$ we have that

$$|g(x) - B| \leq (1 - x) \left(\sum_{n=1}^{N} |B_n - B| + |B| \right) + \epsilon,$$

$$|h(x) - xC| \leq |\sum_{n=1}^{\infty} c_n x^n - C| \leq (1 - x) \left(\sum_{n=1}^{N} |C_n - C| + |C| \right) + \epsilon.$$

So, for any $x \in [0,1)$ we have

$$\begin{aligned} |C - AB| &= |C - Cx + Cx - h(x) + f(x)g(x) - AB| \\ &\leq |C - Cx| + |Cx - h(x)| + |f(x)| |g(x) - B| + |B| |f(x) - A| \\ &\leq (1 - x|C| + (1 - x)) \left(\sum_{n=1}^{N} |C_n - C| + |C| \right) + \epsilon + \\ &\left[|A| + (1 - x)) \left(\sum_{n=1}^{N} |A_n - A| + |A| \right) + \epsilon \right] \left[(1 - x) \left(\sum_{n=1}^{N} |B_n - B| + |B| \right) + \epsilon \right] + \\ &+ |B| \left[(1 - x)) \left(\sum_{n=1}^{N} |A_n - A| + |A| \right) + \epsilon \right] \end{aligned}$$

$$\leq (1 - x) \left[|C| + \sum_{n=1}^{N} |C_n - C| + |C| + |A| \left(\sum_{n=1}^{N} |B_n - B| + |B| \right) + \\ &+ \left(\sum_{n=1}^{N} |A_n - A| + |A| \right) \left(\sum_{n=1}^{N} |B_n - B| + |B| + \epsilon \right) + \\ &+ \epsilon \left(\sum_{n=1}^{N} |B_n - B| + |B| \right) + |B| \left(\sum_{n=1}^{N} |A_n - A| + |A| \right) \right] \\ &+ \epsilon + |A|\epsilon + \epsilon^2 + |B|\epsilon \end{aligned}$$

where $C_1 \equiv C_1(N, A_n, B_n, C_n, A, B, C)$, $C_2 \equiv C_2(A, B)$. As $x \in [0, 1)$ was arbitrary,(and choice of N does not depend on x), we can take $x = 1 - \frac{\epsilon}{1 + C_1 + \epsilon}$. Therefore, we have

$$|C - AB| < C_4 \epsilon + \epsilon^2.$$

As $\epsilon > 0$ was aribtrary we can conclude that C = AB (why?).

 $= (1-x)C_1 + C_2\epsilon + \epsilon^2$