Statistics for Decision Making - I
 Full Marks: 40 Time : 2 hr 30 minutes

Answer 1 and 2 and any two from the rest.

1. Observations are taken on yield of hay $\left(x_{1}\right)$ in 100 cuts/ acre, spring rainfall (x_{2}) in inches and accumulated spring temperature (x_{3}) in Fahrenheit for 20 years. The following estimates are obtained.

Sample mean vector:

$$
\bar{x}=(28.02,4.91,59.00)^{\prime}
$$

Vector of sample standard deviations: $s=(4.42,1.10,85.00)^{\prime}$
and the correlation matrix is

$$
\left(\begin{array}{ccc}
1 & 0.80 & -0.40 \\
& 1 & -0.56 \\
& & 1
\end{array}\right)
$$

Find
i) The multiple linear regression equation of x_{1} on x_{2} and x_{3}.
ii) The multiple correlation coefficient of x_{1} with x_{2} and x_{3}. And hence make a performance analysis of the regression equation
iii) The partial correlation coefficient between x_{1} and x_{3} eliminating the effect of x_{2}. $(4+3+3)$
2. a) In an examination, 9 students obtained the following marks in Economics and Statistics.

Find Spearman's rank correlation coefficient.
(6)

Roll No.	1	2	3	4	5	6	7	8	9
Economics	45	60	32	45	32	32	58	56	47
Statistics	51	51	38	54	54	38	62	58	38

b) If the pdf of X is given by

$$
f(x)=\left\{\begin{array}{c}
2 x e^{-x^{2}}, \quad x>0 \\
0, \text { otherwise }
\end{array}\right.
$$

Then determine the pdf of $Y=X^{2}$
(4)
3. a) Distinguish between correlation and association.
b) Explain sensitivity and specificity in the context of 2×2 contingency table.
c) Given $n=2500, f_{A}=420, f_{A B}=85$ and $f_{B}=670$, prepare a (2×2) contingency table and compute Yule's coefficient of association.
4. a) Define pseudo random number.
(2)
b) Draw a random sample of size 10 from a 2 parameter Weibull distribution with pdf

$$
f(x)=\frac{\beta}{\alpha^{\beta}} x^{\beta-1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}, \quad x \geq 0}
$$

$$
\begin{equation*}
\text { Consider } \alpha=2 \text { and } \beta=0.7 \tag{5}
\end{equation*}
$$

c) Derive the expression for the mgf of chi-square distribution.
5. a) Fit a linear regression equation to the following data and compute the coefficient of determination.

Age in years	50	42	72	36	68	47	55	49
Blood pressure	147	125	160	118	149	128	150	145

b) Find \bar{x} and \bar{y} from the regression equations given by $\mathrm{y}=0.7+1.1 \mathrm{x}$ and $\mathrm{x}=0.25+0.687 \mathrm{y}$
(3)
6. a) Derive the expression for $\operatorname{Var}(\bar{y})$ in the context of SRSWOR. (5)
b) Discuss in brief, different types of sample allocation schemes in the context of stratified random sampling.

