Indian Statistical Institute, Bangalore M.S. (QMS) First Year First Semester – Reliability, Maintainability and Safety I

Mid To	The Even	Duration 2 Une	Data Cantombor 16 20	Max Marker 50
Mid le	erm Exam	Duration: 2 Hrs	Date: September 16, 20	J17 Max Marks: 50
<u>This paper c</u>	arries "55" N	<u>/larks. Answer as ma</u> <u>can</u>	ny questions as you can b score is "50"	out the maximum marks you
Question (1): (i) Let A,B and C be independent events. Then prove that the events A' and (BoC) are independent.				
(ii) One shot is fired from each of three guns Let A B and C denote the events				
that the target is hit by the first second and the third gun respectively. Suppose				
I	P(A) = 0.5, P(B)	B = 0.6 and P(C) = 0.8	B.Assuming A,B and C are	e independent
e	events, what'	s the probability that	exactly one hit is register	red
Orrection (0):	(i)Dama an ata		a second in a second	(6+4=10)
Question (2):	(1)Demonstr	= P(A) + P(B) + P(C) = F	e equation: $P(A \cap B) = P(B \cap C) = P(A \cap C) +$	$-P(A \cap B \cap C)$
	for the three	$= 1 (A)^{-1} (B)^{-1} (C)^{-1}$	(A B) = 1 (B C) = 1 (A C)	
	(ii) A corpora	ate website contains	errors on 50 of 1000 pages	s. If 100 pages are
	sampled r	andomly without re	placement, what's the pro	bability that at least
	one of the	pages in error are ir	the sample	
Questian (2)	N (l. ' A		the second terms are to V and	(4+6=10)
Question (3): Machine A, B and C all produce the same two parts X and Y. Of all the parts				
	produces	s 10%.In addition, 40	% of the parts made by m	achine A are part X.
	50% of th	ne parts made by ma	chine B are part X, 70% of	f the parts made by machine C
	are part 2	X	-	
	A part p	roduced by this com	pany is randomly sample	ed and is determined to be an
	X part. V	With the knowledge	that it is an X part, revise	(5)
	came no	In machine A,D of C		(5)
Question (4): (i)(a)Show that the mean of the Hyper geometric distribution equals that of the				
Binomial Distribution with the parameters 'n' the sample size and p=				
	proportion	of successes in the s	et of $(a+b)$ objects = $a/(a+b)$	b) where 'a' objects
	'n' is very s	a as successes and 1 mall compared to (a)	b objects as failure (b) wh +b) the variance of the Hy	then the sample size
	distribution	n approaches that of	the Binomial Distribution	with $p = a/(a+b)$
		11		1
	(ii) Flaws oc	cur in the interior of	plastic used for automob	iles according to a
	Poisson dis	tribution with a mea	in of 0.02 flaw per panel ((a) If 50 panels are
	expected r	what's the probabilit	y that there are no flaws (flaw is found?
	(c)If 50 pan	els are inspected, wh	at's the probability that th	ne number of panels
	that have o	ne or more flaws is l	ess than or equal to 2? $(4$	+6+3+4+3=20)
Question (5):	(a) Differen	tiate between "Failur	e Density Function: f(t)" a	nnd "Hazard
	Function	h(t)"		
	(b) Suppose	the life in hours of a unction $f(x) = \int 0$	certain kind electronic co	omponent has the
	density it	$(x) = \{0 \\ \{100/$	$x^2 \text{ for } x \ge 100$	
	What's th	e probability that no	ne of the three such comp	oonents in a given
	electronic	equipment will hav	e to be replaced during th	ne first 150 hours
	of operat	ion? What's the prob	ability that all three of the	e original
	compone	nts will have been re	placed during the first 15	(4+6-10)
			((4+0= 10)