INDIAN STATISTICAL INSTITUTE SQC & OR UNIT, HYDERABAD

MS in QUALITY MANAGEMENT SCIENCE 2015-17 III SEMESTER: FINAL EXAMINATION

Subject: Nonlinear Programming (NLP) Date: 15-Nov-2016 Duration: 3 Hours Maximum Marks 60

INSTRUCTIONS

This paper carries 74 Marks. Answer as much as you can. Maximum you can score is 60.

- 1. State whether the following statements are true or false:
 - a) If C is a closed convex cone of \mathbf{R}^n , then for every vector $x \in \mathbf{R}^n$, there exist $u \in C$ and $v \in C^*$ such that x = u + v.
 - b) A function is convex if and only if its level sets are convex.
 - c) Let $f(x,y) = x \sin y^2$. Then f is increasing in the direction $d = (1, \frac{\pi}{2})^t$ at $z = (1, \frac{\pi}{3})^t$.
 - d) The direction $d = (-1, 2)^t$ for the problem: Minimize $f(x, y) = x \sin y^2$ is a feasible direction.
 - e) Consider the problem:

Minimize
$$x^2e^{-2x} + 3y^3$$

subject to

$$x + 2y \le 4,$$

$$x^2 - 3y = 28,$$

$$2x + y^2 \le 12.$$

Then every direction is a feasible direction at the point $z = (5, -1)^t$.

- f) $f(x) = \ln(x-3), x > 3$, is a quasiconvex function.
- g) The function $f(x) = \frac{a^t x + 3}{b^t x + 7}$, for $x \in \mathbf{R}^n$ such that $b^t x + 7 > 0$ is a convex function (a and b are fixed vectors in \mathbf{R}^n). $(7 \times 3 = 21)$.
- 2. Minimize $x_1^2 + 2x_2$ Subject to

$$(x_1 - 2)^2 + X_2^2 \le 9$$

take the initial point as (2,0).

- a) Draw the feasible region.
- b) Is (2,0) a local optimum?
- c) Does the problem have an optimal solution? Justify your answer quoting a theorem.
- d) Does this problem have an interior point optimal solution?
- e) What are the extreme points of the feasible region?
- f) Show that one of the extreme points is optimal.
- g) Starting at (2,0) find the next point for exploring using the method of feasible directions. $(7 \times 4 = 28)$
- 3. Let f be a twice differentiable function defined on an open set $S \subseteq \mathbb{R}^n$. Suppose $z \in S$ is not local optimal. Find a feasible direction d in which the function decreases. (5)
- 4. (a) Define semidefinite programming problem and give a nontrivial but simple example. (5)
 - (b) Consider the binary integer problem: Minimize $c^t x$ subject to $Ax \leq b, x$ is a binary vector. Formulate the problem as a semidefinite programming problem. (5)
- 5. Suppose we have a refinery that must be ship finished goods to some storage tanks. Suppose further that there are two pipelines, A and B, to do the shipping. The cost of shipping x units on A is ax^2 ; the cost of shipping y units on B is by^2 , where a and b are known positive numbers. How can we ship Q units while minimizing cost? What happens to the cost if Q increases by 5%. Formulate the problem. Write down KKT conditions. State whether they are necessary and sufficient for the problem. Solve the problem. (10)