INDIAN STATISTICAL INSTITUTE

MS QMS

TEST ON MULTIVARIATE ANALYSIS

Date: 20 February 2024Time: 2 hoursMaximum Marks: 50

Answer as many questions as you can. The maximum you can score is only 50 marks

1.

- a. Suppose a random vector x is multivariate normally distributed with mean vector μ and variance-covariance matrix Σ . The vector y is defined as y = Ax + C where A is a $q \times p$ matrix and C is a $q \times 1$ vector. What is the distribution of y?
- b. Suppose a random vector x is multivariate normally distributed with mean vector μ and variance-covariance matrix Σ . What is the distribution of $M = (x \bar{x})^T (x \bar{x})$, where \bar{x} is the sample mean vector?
- c. Suppose a random vector *x* is multivariate normally distributed with mean vector μ and variance-covariance matrix Σ . We want to test whether the mean vector of *x* is equal to μ . What is the test statistic for this hypothesis test, and how can we obtain the p-value?
- d. State the name of the R package and provide the R code to generate 1000 random numbers from a multivariate normal distribution
- e. State the null and alternative hypothesis used in the Bartlett test for sphericity

[5 x 2 =10]

2.

- a. Briefly describe the eigenvalues and eigenvectors of a matrix.
- b. Suppose the eigenvalues of a matrix *M* is $\lambda = [108.75, -27.43, 21.69]$ and the eigenvector

$$E = \begin{bmatrix} -0.54 & -0.75 & 0.16\\ -0.48 & 0.16 & -0.96\\ -0.69 & 0.64 & 0.25 \end{bmatrix} \&$$

$$E^{-1} = \begin{bmatrix} -0.67 & -0.30 & -0.71 \\ -0.81 & 0.03 & 0.61 \\ 0.20 & -0.89 & 0.46 \end{bmatrix}$$

find the matrix *M*?

- a. Describe the different methods to identify the optimum number of clusters in cluster analysis
- b. The between sum of squares and within sum of squares obtained for different values of k in k mean clustering method is given below. Identify the optimum k using a suitable graphical technique.

k	Between SS	Within SS	k	Between SS	Within SS
1	0.0	328.6	6	279.4	49.3
2	155.9	172.7	7	292.0	36.6
3	248.9	79.7	8	300.9	27.8
4	264.1	64.5	9	302.4	26.3
5	269.8	58.8			

[15]

4. A smartphone manufacturer wants to enhance the mobile handset business. The company has conducted a conjoint analysis to obtain customer preferences. The details of the conjoint analysis with aggregate ranking are given below.

Combinations	Screen Size	Camera Quality	Battery Life	Prize Range	Score
1	5.5 Inches	Basic	Long-lasting	Budget-friendly	1.2
2	5.5 Inches	Moderate	Medium	Mid-range	1.5
3	5.5 Inches	High-end	Short	Premium	1.7
4	6.0 Inches	Basic	Medium	Premium	1.3
5	6.0 Inches	Moderate	Short	Budget-friendly	4.4
6	6.0 Inches	High-end	Long-lasting	Mid-range	6.9
7	6.5 Inches	Basic	Short	Mid-range	4.3
8	6.5 Inches	Moderate	Long-lasting	Premium	6.8
9	6.5 Inches	High-end	Medium	Budget-friendly	9.5

- a. Analyze the data, and compute part worth utilities and importance scores.
- b. What suggestions can you provide to the manufacturer to optimize the smartphone business?
- c. Compute the expected score for the smartphone with suggested features.

[15]

3.