Course Archives Theoretical Statistics and Mathematics Unit
Course: Fourier Analysis
Instructor: Rajeev B
Room: G25
Time: Currently offered
Level: Postgraduate
Past Exams

Syllabus: Fourier and Fourier-Stieltjes' series, summability kernels, convergence tests. Fourier transforms, the Schwartz space, Fourier Inversion and Plancherel theorem. Maximal functions and boundedness of Hilbert transform. Paley-Wiener Theorem. Poisson summation formula, Heisenberg uncertainty Principle, Wiener's Tauberian theorem. Introduction to wavelets and multi-resolution analysis.

Suggested Texts :

1. E. M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, Princeton UniversityPress (2003).
2. Y. Katznelson, An introduction to harmonic analysis, Dover Publications (1976).
3. E.M. Stein and G.Weiss, Introduction to Fourier Analysis on Euclidean Spaces, PrincetonUniversity Press (1971).
4. E. Hernandez and G. Weiss, A first course on wavelets, Studies in Advanced Mathematics.CRC Press (1996).

Midterm Exam 40 marks
Assignment - marks
Final Exam 60 marks
Total 100 marks

Top of the page

Past Exams
05.pdf 06.pdf 09.pdf 11.pdf 13.pdf 15.pdf 17.pdf 19.pdf
13.pdf 15.pdf
05.pdf 06.pdf 09.pdf 11.pdf 13.pdf 15.pdf 17.pdf
13.pdf 15.pdf
Supplementary and Back Paper
15.pdf 17.pdf

Top of the page

[ Semester Schedule ] [ SMU ] [Indian Statistical Institute]