Liftings of Covariant Representations of W*-correspondences

Santanu Dey,
Indian Institute of Technology Bombay

14.08 .2010

Outline

(1) Introduction

- Representations
- Preliminaries
(2) Dilations and Liftings
- Dilations
- Liftings
(3) References

Introduction

- For a Hilbert C^{*}-module \mathcal{G}, let $\mathcal{L}(\mathcal{G})$ the set of all adjointable operators on \mathcal{G}.
- A G over a von Neumann algebra \mathcal{M} can be equipped with the σ-topology induced by $f()=.\sum_{n=1}^{\infty} \omega_{n}\left(\left\langle\xi_{n},.\right\rangle\right)$ where $\sum\left\|\omega_{n}\right\|\left\|\xi_{n}\right\|<\infty$.
- \mathcal{G} is called self-dual if $\forall \phi: \mathcal{G} \rightarrow \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi)=\left\langle\xi_{\phi}, \xi\right\rangle$
- For self-dual $\mathcal{G}, \mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W^{*}-correspondence \mathcal{E} is a self-dual Hilbert C^{*}-bimodule over \mathcal{M}, where the left action $\varphi: \mathcal{M} \rightarrow \mathcal{L}(\mathcal{E})$ is normal.
- $\varphi(a) \eta=a \eta$

Introduction

- For a Hilbert C^{*}-module \mathcal{G}, let $\mathcal{L}(\mathcal{G})$ the set of all adjointable operators on \mathcal{G}.
- A \mathcal{G} over a von Neumann algebra \mathcal{M} can be equipped with the σ-topology induced by $f()=.\sum_{n=1}^{\infty} \omega_{n}\left(\left\langle\xi_{n},.\right\rangle\right)$ where $\sum\left\|\omega_{n}\right\|\left\|\xi_{n}\right\|<\infty$.
- \mathcal{G} is called self-dual if $\forall \phi: \mathcal{G} \rightarrow \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that
- For self-dual $\mathcal{G}, \mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W^{*}-correspondence \mathcal{E} is a self-dual Hilbert C^{*}-bimodule over \mathcal{M}, where the left action $\varphi: \mathcal{M} \rightarrow \mathcal{L}(\mathcal{E})$ is normal.
- $\varphi(a) \eta=a \eta$

Introduction

- For a Hilbert C^{*}-module \mathcal{G}, let $\mathcal{L}(\mathcal{G})$ the set of all adjointable operators on \mathcal{G}.
- A \mathcal{G} over a von Neumann algebra \mathcal{M} can be equipped with the σ-topology induced by $f()=.\sum_{n=1}^{\infty} \omega_{n}\left(\left\langle\xi_{n},.\right\rangle\right)$ where $\sum\left\|\omega_{n}\right\|\left\|\xi_{n}\right\|<\infty$.
- \mathcal{G} is called self-dual if $\forall \phi: \mathcal{G} \rightarrow \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi)=\left\langle\xi_{\phi}, \xi\right\rangle, \quad \xi \in \mathcal{G}$.
- For self-dual $\mathcal{G}, \mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W^{*}-correspondence \mathcal{E} is a self-dual Hilbert C^{*}-bimodule over \mathcal{M}, where the left action $\varphi: \mathcal{M} \rightarrow \mathcal{L}(\mathcal{E})$ is normal.

Introduction

- For a Hilbert C^{*}-module \mathcal{G}, let $\mathcal{L}(\mathcal{G})$ the set of all adjointable operators on \mathcal{G}.
- A \mathcal{G} over a von Neumann algebra \mathcal{M} can be equipped with the σ-topology induced by $f()=.\sum_{n=1}^{\infty} \omega_{n}\left(\left\langle\xi_{n},.\right\rangle\right)$ where $\sum\left\|\omega_{n}\right\|\left\|\xi_{n}\right\|<\infty$.
- \mathcal{G} is called self-dual if $\forall \phi: \mathcal{G} \rightarrow \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi)=\left\langle\xi_{\phi}, \xi\right\rangle, \quad \xi \in \mathcal{G}$.
- For self-dual $\mathcal{G}, \mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W^{*}-correspondence \mathcal{E} is a self-dual Hilbert C^{*}-bimodule over \mathcal{M}, where the left action $\varphi: \mathcal{M} \rightarrow \mathcal{L}(\mathcal{E})$ is normal.

Introduction

- For a Hilbert C^{*}-module \mathcal{G}, let $\mathcal{L}(\mathcal{G})$ the set of all adjointable operators on \mathcal{G}.
- A \mathcal{G} over a von Neumann algebra \mathcal{M} can be equipped with the σ-topology induced by $f()=.\sum_{n=1}^{\infty} \omega_{n}\left(\left\langle\xi_{n},.\right\rangle\right)$ where $\sum\left\|\omega_{n}\right\|\left\|\xi_{n}\right\|<\infty$.
- \mathcal{G} is called self-dual if $\forall \phi: \mathcal{G} \rightarrow \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi)=\left\langle\xi_{\phi}, \xi\right\rangle, \quad \xi \in \mathcal{G}$.
- For self-dual $\mathcal{G}, \mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W^{*}-correspondence \mathcal{E} is a self-dual Hilbert C^{*}-bimodule over \mathcal{M}, where the left action $\varphi: \mathcal{M} \rightarrow \mathcal{L}(\mathcal{E})$ is normal.

Introduction

- For a Hilbert C^{*}-module \mathcal{G}, let $\mathcal{L}(\mathcal{G})$ the set of all adjointable operators on \mathcal{G}.
- A \mathcal{G} over a von Neumann algebra \mathcal{M} can be equipped with the σ-topology induced by $f()=.\sum_{n=1}^{\infty} \omega_{n}\left(\left\langle\xi_{n},.\right\rangle\right)$ where $\sum\left\|\omega_{n}\right\|\left\|\xi_{n}\right\|<\infty$.
- \mathcal{G} is called self-dual if $\forall \phi: \mathcal{G} \rightarrow \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi)=\left\langle\xi_{\phi}, \xi\right\rangle, \quad \xi \in \mathcal{G}$.
- For self-dual $\mathcal{G}, \mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W^{*}-correspondence \mathcal{E} is a self-dual Hilbert C^{*}-bimodule over \mathcal{M}, where the left action $\varphi: \mathcal{M} \rightarrow \mathcal{L}(\mathcal{E})$ is normal.
- $\varphi(a) \eta=a \eta \quad \forall a \in \mathcal{M}, \eta \in \mathcal{E}$.

Outline

(1) Introduction

- Representations
- Preliminaries

2) Dilations and Liftings
 - Dilations
 - Liftings

(3) References

Covariant representations

Definition

A pair (T, σ) is called a covariant representation of \mathcal{E} over \mathcal{M} on a Hilbert space \mathcal{H}, if
(i) $T: \mathcal{E} \rightarrow B(\mathcal{H})$ is a linear map that is continuous (w.r.t. σ and ultra weak topology)
(ii) $\sigma: \mathcal{M} \rightarrow B(\mathcal{H})$ is a normal homomorphism
(iii) $T(a \xi)=\sigma(a) T(\xi), T(\xi a)=T(\xi) \sigma(a) \quad \xi \in \mathcal{E}, a \in \mathcal{M}$.

Moreover if (T, σ) satisfies
it is called isometric.

Covariant representations

Definition

A pair (T, σ) is called a covariant representation of \mathcal{E} over \mathcal{M} on a Hilbert space \mathcal{H}, if
(i) $T: \mathcal{E} \rightarrow B(\mathcal{H})$ is a linear map that is continuous (w.r.t. σ and ultra weak topology)
(ii) $\sigma: \mathcal{M} \rightarrow B(\mathcal{H})$ is a normal homomorphism
(iii) $T(a \xi)=\sigma(a) T(\xi), T(\xi a)=T(\xi) \sigma(a) \quad \xi \in \mathcal{E}, a \in \mathcal{M}$.

Moreover if (T, σ) satisfies

$$
T(\xi)^{*} T(\eta)=\sigma(\langle\xi, \eta\rangle), \quad \xi, \eta \in \mathcal{E}
$$

it is called isometric.

Outline

(9) Introduction

- Representations
- Preliminaries

2) Dilations and Liftings
 - Dilations
 - Liftings

(3) References

σ-dual

- For \mathcal{E} over \mathcal{M} and a normal $\sigma: \mathcal{M} \rightarrow B(\mathcal{H})$ the induced tensor product $\mathcal{E} \otimes_{\sigma} \mathcal{H}$ is the unique Hilbert space such that:
$\left\langle\xi_{1} \otimes h_{1}, \xi_{2} \otimes h_{2}\right\rangle=\left\langle h_{1}, \sigma\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) h_{2}\right\rangle, \quad \xi_{1}, \xi_{2} \in \mathcal{E} ; h_{1}, h_{2} \in \mathcal{H}$.
- Define σ-dual of \mathcal{E} as
$\mathcal{E}^{\sigma}:=\left\{\mu \in B\left(\mathcal{H}, \mathcal{E} \otimes_{\sigma} \mathcal{H}\right): \mu \sigma(a)=(\varphi(a) \otimes \mathbf{1}) \mu \quad \forall a \in \mathcal{M}\right\}$
- Let (T, σ) of \mathcal{E} on \mathcal{T} be such that T is bounded. Then $\tilde{T}: \mathcal{E} \otimes \mathcal{H} \rightarrow \mathcal{H}$ can be associated with

$$
\tilde{T}(\eta \otimes h):=T(\eta) h, \quad \eta \in \mathcal{E}, h \in \mathcal{H} .
$$

σ-dual

- For \mathcal{E} over \mathcal{M} and a normal $\sigma: \mathcal{M} \rightarrow B(\mathcal{H})$ the induced tensor product $\mathcal{E} \otimes_{\sigma} \mathcal{H}$ is the unique Hilbert space such that:

$$
\left\langle\xi_{1} \otimes h_{1}, \xi_{2} \otimes h_{2}\right\rangle=\left\langle h_{1}, \sigma\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) h_{2}\right\rangle, \quad \xi_{1}, \xi_{2} \in \mathcal{E} ; h_{1}, h_{2} \in \mathcal{H}
$$

- Define σ-dual of \mathcal{E} as

$$
\mathcal{E}^{\sigma}:=\left\{\mu \in B\left(\mathcal{H}, \mathcal{E} \otimes_{\sigma} \mathcal{H}\right): \mu \sigma(a)=(\varphi(a) \otimes \mathbf{1}) \mu \quad \forall a \in \mathcal{M}\right\} .
$$

- Let (T, σ) of \mathcal{E} on \mathcal{H} be such that T is bounded. Then $\tilde{T}: \mathcal{E} \otimes \mathcal{H} \rightarrow \mathcal{H}$ can be associated with

$$
\tilde{T}(\eta \otimes h):=T(\eta) h, \quad \eta \in \mathcal{E}, h \in \mathcal{H} .
$$

σ-dual

- For \mathcal{E} over \mathcal{M} and a normal $\sigma: \mathcal{M} \rightarrow B(\mathcal{H})$ the induced tensor product $\mathcal{E} \otimes_{\sigma} \mathcal{H}$ is the unique Hilbert space such that:

$$
\left\langle\xi_{1} \otimes h_{1}, \xi_{2} \otimes h_{2}\right\rangle=\left\langle h_{1}, \sigma\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) h_{2}\right\rangle, \quad \xi_{1}, \xi_{2} \in \mathcal{E} ; h_{1}, h_{2} \in \mathcal{H}
$$

- Define σ-dual of \mathcal{E} as

$$
\mathcal{E}^{\sigma}:=\left\{\mu \in B\left(\mathcal{H}, \mathcal{E} \otimes_{\sigma} \mathcal{H}\right): \mu \sigma(a)=(\varphi(a) \otimes \mathbf{1}) \mu \quad \forall a \in \mathcal{M}\right\}
$$

- Let (T, σ) of \mathcal{E} on \mathcal{H} be such that T is bounded. Then $\tilde{T}: \mathcal{E} \otimes \mathcal{H} \rightarrow \mathcal{H}$ can be associated with

$$
\tilde{T}(\eta \otimes h):=T(\eta) h, \quad \eta \in \mathcal{E}, h \in \mathcal{H}
$$

σ-dual

Lemma

let (T, σ) be a covariant representation of \mathcal{E}
(i) T is completely contractive $\Leftrightarrow\|\tilde{T}\| \leq \mathbf{1}$
(ii) (T, σ) is isometric if and only if \tilde{T} is an isometry.
\tilde{T}^{*}, when bounded is an element of \mathcal{E}^{σ} and converse.

σ-dual

Lemma

let (T, σ) be a covariant representation of \mathcal{E}
(i) T is completely contractive $\Leftrightarrow\|\tilde{T}\| \leq \mathbf{1}$
(ii) (T, σ) is isometric if and only if \tilde{T} is an isometry.
\tilde{T}^{*}, when bounded is an element of \mathcal{E}^{σ} and converse.

Liftings

Definition

Let $\left(C, \sigma_{C}\right)$ be a contractive covariant representation of \mathcal{E} on \mathcal{H}_{C}. Then a contractive covariant representation $\left(E, \sigma_{E}\right)$ of \mathcal{E} on a $\mathcal{H}_{E} \supset \mathcal{H}_{C}$ is called a contractive lifting of $\left(C, \sigma_{C}\right)$ if
(i) $\left.\sigma_{E}(a)\right|_{\mathcal{H}_{C}}=\left.P_{\mathcal{H}_{C}} \sigma_{E}(a)\right|_{\mathcal{H}_{C}}=\sigma_{C}(a) \quad a \in \mathcal{M}$
(ii) $\mathcal{H}_{C}^{\frac{1}{C}}$ is invariant w.r.t. $E(\xi)$ for all $\xi \in \mathcal{E}$
(iii) $\left.P_{\mathcal{H}_{C}} E(\xi)\right|_{\mathcal{H}_{C}}=C(\xi)$ for all $\xi \in \mathcal{E}$

Set $\mathcal{H}_{A}:=\mathcal{H}_{C}^{\perp}, A(\xi):=\left.E(\xi)\right|_{\mathcal{H}_{A}}$ and $\sigma_{A}(a):=\left.\sigma_{E}(a)\right|_{\mathcal{H}_{A}}$ for all
$\xi \in \mathcal{E}, a \in \mathcal{M}$.

Liftings

Definition

Let $\left(C, \sigma_{C}\right)$ be a contractive covariant representation of \mathcal{E} on \mathcal{H}_{C}. Then a contractive covariant representation $\left(E, \sigma_{E}\right)$ of \mathcal{E} on a $\mathcal{H}_{E} \supset \mathcal{H}_{C}$ is called a contractive lifting of $\left(C, \sigma_{C}\right)$ if
(i) $\left.\sigma_{E}(a)\right|_{\mathcal{H}_{C}}=\left.P_{\mathcal{H}_{C}} \sigma_{E}(a)\right|_{\mathcal{H}_{C}}=\sigma_{C}(a) \quad a \in \mathcal{M}$
(ii) \mathcal{H}_{C}^{\perp} is invariant w.r.t. $E(\xi)$ for all $\xi \in \mathcal{E}$
(iii) $\left.P_{\mathcal{H}_{c}} E(\xi)\right|_{\mathcal{H}_{c}}=C(\xi)$ for all $\xi \in \mathcal{E}$

Set $\mathcal{H}_{A}:=\mathcal{H}_{C}^{\perp}, A(\xi):=\left.E(\xi)\right|_{\mathcal{H}_{A}}$ and $\sigma_{A}(a):=\left.\sigma_{E}(a)\right|_{\mathcal{H}_{A}}$ for all
$\xi \in \mathcal{E}, a \in \mathcal{M}$

Liftings

Definition

Let $\left(C, \sigma_{C}\right)$ be a contractive covariant representation of \mathcal{E} on \mathcal{H}_{C}. Then a contractive covariant representation $\left(E, \sigma_{E}\right)$ of \mathcal{E} on a $\mathcal{H}_{E} \supset \mathcal{H}_{C}$ is called a contractive lifting of $\left(C, \sigma_{C}\right)$ if
(i) $\left.\sigma_{E}(a)\right|_{\mathcal{H}_{C}}=\left.P_{\mathcal{H}_{C}} \sigma_{E}(a)\right|_{\mathcal{H}_{C}}=\sigma_{C}(a) \quad a \in \mathcal{M}$
(ii) \mathcal{H}_{C}^{\perp} is invariant w.r.t. $E(\xi)$ for all $\xi \in \mathcal{E}$
(iii) $\left.P_{\mathcal{H}_{c}} E(\xi)\right|_{\mathcal{H}_{c}}=C(\xi)$ for all $\xi \in \mathcal{E}$

Set $\mathcal{H}_{A}:=\mathcal{H}_{C}^{\perp}, A(\xi):=\left.E(\xi)\right|_{\mathcal{H}_{A}}$ and $\sigma_{A}(a):=\left.\sigma_{E}(a)\right|_{\mathcal{H}_{A}}$ for all $\xi \in \mathcal{E}, a \in \mathcal{M}$.

Outline

(9) Introduction
 - Representations
 - Preliminaries

(2) Dilations and Liftings
 - Dilations
 - Liftings

(3) References

mid

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H}.
An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ).
A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

$$
\hat{\mathcal{H}}=\operatorname{span}\left\{V\left(\xi_{1}\right) \ldots V\left(\xi_{n}\right) h: h \in \mathcal{H}, \xi_{i} \in \mathcal{E} \text { for } i=1, \ldots n\right\} .
$$

- mid is unique up to unitary equivalence.

mid

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H}.
An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ).
A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

- mid is unique up to unitary equivalence.

mid

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H}.
An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ).
A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

$$
\hat{\mathcal{H}}=\overline{\operatorname{span}}\left\{V\left(\xi_{1}\right) \ldots V\left(\xi_{n}\right) h: h \in \mathcal{H}, \xi_{i} \in \mathcal{E} \text { for } i=1, \ldots n\right\} .
$$

- mid is unique up to unitary equivalence.

mid

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H}.
An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ).
A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

$$
\hat{\mathcal{H}}=\overline{\operatorname{span}}\left\{V\left(\xi_{1}\right) \ldots V\left(\xi_{n}\right) h: h \in \mathcal{H}, \xi_{i} \in \mathcal{E} \text { for } i=1, \ldots n\right\} .
$$

- mid is unique up to unitary equivalence.

Full Fock module

- $\mathcal{E} \otimes \mathcal{E}$ w.r.t.
$\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\eta_{1}, \varphi\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) \eta_{2}\right\rangle, \quad \xi_{1}, \xi_{2}, \eta_{1}, \eta_{2} \in \mathcal{E}$.
- Full Fock module over \mathcal{M} is

- For $\xi \in \mathcal{E} \quad L_{\xi} \eta=\xi \otimes \eta \quad \forall \eta \in \mathcal{E}$
- Define $L \otimes \mathbf{1}_{\mathcal{D}_{T}}: \mathcal{E} \rightarrow B\left(\mathcal{F} \otimes \mathcal{D}_{T}\right)$ by

$$
\left(L \otimes \mathbf{1}_{\mathcal{D}_{T}}\right)(\xi)=L_{\xi} \otimes \mathbf{1}_{\mathcal{D}_{T}}
$$

Full Fock module

- $\mathcal{E} \otimes \mathcal{E}$ w.r.t.

$$
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\eta_{1}, \varphi\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) \eta_{2}\right\rangle, \quad \xi_{1}, \xi_{2}, \eta_{1}, \eta_{2} \in \mathcal{E}
$$

- Full Fock module over \mathcal{M} is

$$
\mathcal{F}:=\oplus_{n=0}^{\infty} \mathcal{E}^{\otimes^{n}} \text { where } \mathcal{E}^{\otimes^{0}}=\mathcal{M}
$$

- For $\xi \in \mathcal{E} \quad L_{\xi} \eta=\xi \otimes \eta \quad \forall \eta \in \mathcal{E}$
- Define $L \otimes \mathbf{1}_{\mathcal{D}_{T}}: \mathcal{E} \rightarrow B\left(\mathcal{F} \otimes \mathcal{D}_{T}\right)$ by

$$
\left(L \otimes 1_{\mathcal{D}_{T}}\right)(\xi)=L_{\xi} \otimes 1_{\mathcal{D}_{T}} .
$$

Full Fock module

- $\mathcal{E} \otimes \mathcal{E}$ w.r.t.

$$
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\eta_{1}, \varphi\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) \eta_{2}\right\rangle, \quad \xi_{1}, \xi_{2}, \eta_{1}, \eta_{2} \in \mathcal{E}
$$

- Full Fock module over \mathcal{M} is

$$
\mathcal{F}:=\oplus_{n=0}^{\infty} \mathcal{E}^{\otimes^{n}} \text { where } \mathcal{E}^{\otimes^{0}}=\mathcal{M}
$$

- For $\xi \in \mathcal{E} \quad L_{\xi} \eta=\xi \otimes \eta \quad \forall \eta \in \mathcal{E}$
- Define $L \otimes \mathbf{1}_{\mathcal{D}_{T}}: \mathcal{E} \rightarrow B\left(\mathcal{F} \otimes \mathcal{D}_{T}\right)$ by

$$
\left(L \otimes \mathbf{1}_{\mathcal{D}_{T}}\right)(\xi)=L_{\xi} \otimes \mathbf{1}_{\mathcal{D}_{T}}
$$

Full Fock module

- $\mathcal{E} \otimes \mathcal{E}$ w.r.t.

$$
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\eta_{1}, \varphi\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) \eta_{2}\right\rangle, \quad \xi_{1}, \xi_{2}, \eta_{1}, \eta_{2} \in \mathcal{E}
$$

- Full Fock module over \mathcal{M} is

$$
\mathcal{F}:=\oplus_{n=0}^{\infty} \mathcal{E}^{\otimes^{n}} \text { where } \mathcal{E}^{\otimes^{0}}=\mathcal{M}
$$

- For $\xi \in \mathcal{E} \quad L_{\xi} \eta=\xi \otimes \eta \quad \forall \eta \in \mathcal{E}$
- Define $L \otimes \mathbf{1}_{\mathcal{D}_{T}}: \mathcal{E} \rightarrow B\left(\mathcal{F} \otimes \mathcal{D}_{T}\right)$ by

$$
\left(L \otimes \mathbf{1}_{\mathcal{D}_{T}}\right)(\xi)=L_{\xi} \otimes \mathbf{1}_{\mathcal{D}_{T}}
$$

Presentation of mid

- Set $D_{*, T}:=\left(\mathbf{1}-\tilde{T} \tilde{T}^{*}\right)^{\frac{1}{2}}($ in $B(\mathcal{H}))$
and $D_{T}:=\left(1-\tilde{T}^{*} \tilde{T}\right)^{\frac{1}{2}}\left(\right.$ in $\left.B\left(\mathcal{E} \otimes_{\sigma} \mathcal{H}\right)\right)$.
- Let $\mathcal{D}_{*, T}:=\overline{\text { range } D_{*, T}}$ and $\mathcal{D}_{T}=\overline{\text { range } D_{T}}$.
- Every c.c.c. representation (T, σ) of \mathcal{E} has a mid (V, π), with the representation Hilbert space:

$$
\hat{\mathcal{H}}=\mathcal{H} \oplus \mathcal{F} \otimes_{\sigma_{1}} \mathcal{D}_{T}
$$

Presentation of mid

- Set $D_{*, T}:=\left(\mathbf{1}-\tilde{T} \tilde{T}^{*}\right)^{\frac{1}{2}}($ in $B(\mathcal{H}))$
and $D_{T}:=\left(1-\tilde{T}^{*} \tilde{T}\right)^{\frac{1}{2}}\left(\right.$ in $\left.B\left(\mathcal{E} \otimes_{\sigma} \mathcal{H}\right)\right)$.
- Let $\mathcal{D}_{*, T}:=\overline{\text { range } D_{*, T}}$ and $\mathcal{D}_{T}=\overline{\text { range } D_{T}}$.
- Every c.c.c. representation (T, σ) of \mathcal{E} has a mid (V, π), with the representation Hilbert space:

Presentation of mid

- Set $D_{*, T}:=\left(\mathbf{1}-\tilde{T} \tilde{T}^{*}\right)^{\frac{1}{2}}($ in $B(\mathcal{H}))$

$$
\text { and } D_{T}:=\left(\mathbf{1}-\tilde{T}^{*} \tilde{T}\right)^{\frac{1}{2}}\left(\text { in } B\left(\mathcal{E} \otimes_{\sigma} \mathcal{H}\right)\right)
$$

- Let $\mathcal{D}_{*, T}:=\overline{\text { range } D_{*, T}}$ and $\mathcal{D}_{T}=\overline{\text { range } D_{T}}$.
- Every c.c.c. representation (T, σ) of \mathcal{E} has a mid (V, π), with the representation Hilbert space:

$$
\begin{array}{r}
\hat{\mathcal{H}}=\mathcal{H} \oplus \mathcal{F} \otimes_{\sigma_{1}} \mathcal{D}_{T} \\
V(\xi)=\left(\begin{array}{cccc}
T(\xi) & 0 & 0 & \ldots \\
D_{T}(\xi \otimes .) & 0 & 0 & \ldots \\
0 & \mathbf{1} & 0 & \\
0 & 0 & \mathbf{1} & \\
& & & \ddots
\end{array}\right)
\end{array}
$$

Outline

(9) Introduction
 - Representations
 - Preliminaries

(2) Dilations and Liftings

- Dilations
- Liftings
(3) References

Intertwining unitary

- Let $\left(E, \sigma_{E}\right)$ be a contractive lifting of $\left(C, \sigma_{C}\right)$. Clearly mid $\left(V^{C}, \pi_{C}\right)$ is embedded in $\left(V^{E}, \pi_{E}\right)$. We introduce a c.c.c. representation $\left(Y, \pi_{Y}\right)$ on the orthogonal complement \mathcal{K} of the space of mid $\left(V^{C}, \pi_{C}\right)$ to encode this.
- Hence we can get a unitary W such that

Intertwining unitary

- Let $\left(E, \sigma_{E}\right)$ be a contractive lifting of $\left(C, \sigma_{C}\right)$. Clearly mid (V^{C}, π_{C}) is embedded in $\left(V^{E}, \pi_{E}\right)$. We introduce a c.c.c. representation ($Y, \pi \curlyvee$) on the orthogonal complement \mathcal{K} of the space of mid $\left(V^{C}, \pi_{C}\right)$ to encode this.
- Hence we can get a unitary W such that

$$
\begin{array}{r}
W: \mathcal{H}_{E} \oplus\left(\mathcal{F} \otimes \mathcal{D}_{E}\right) \rightarrow \mathcal{H}_{C} \oplus\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \mathcal{K} \\
\hat{V}^{E}(\xi) W=W V^{E}(\xi), \quad\left(\pi_{C} \oplus \pi_{Y}\right)(a) W=W \pi_{E}(a), \\
\left.W\right|_{\mathcal{H}_{C}}=\left.\mathbf{1}\right|_{\mathcal{H}_{C}}, \text { with } \quad \hat{V}^{E}(\xi)=V^{C}(\xi) \oplus Y(\xi)
\end{array}
$$

C.n.c.

Lemma

($\left.E, \sigma_{E}\right)$ is c.c.c. if and only if $\left(C, \sigma_{C}\right)$ and $\left(A, \sigma_{A}\right)$ are c.c.c. and \exists a contraction $\gamma: \mathcal{D}_{*, A} \rightarrow \mathcal{D}_{C}$ such that

$$
\tilde{B}=D_{*, A} \gamma^{*} D_{C}
$$

(A, σ_{A}) is called completely non-coisometric (c.n.c.), if $\mathcal{H}_{A}^{1}:=\left\{h \in \mathcal{H}_{A}:\left\|\left(\tilde{A}^{n}\right)^{*} h\right\|=\|h\|\right.$ for all $\left.n \in \mathbb{N}\right\}=0$.

C.n.c.

Lemma

$\left(E, \sigma_{E}\right)$ is c.c.c. if and only if $\left(C, \sigma_{C}\right)$ and $\left(A, \sigma_{A}\right)$ are c.c.c. and \exists a contraction $\gamma: \mathcal{D}_{*, A} \rightarrow \mathcal{D}_{C}$ such that

$$
\tilde{B}=D_{*, A} \gamma^{*} D_{C}
$$

(A, σ_{A}) is called completely non-coisometric (c.n.c.), if $\mathcal{H}_{A}^{1}:=\left\{h \in \mathcal{H}_{A}:\left\|\left(\tilde{A}^{n}\right)^{*} h\right\|=\|h\|\right.$ for all $\left.n \in \mathbb{N}\right\}=0$.

Reduced liftings

Definition

A completely contractive lifting $\left(E, \sigma_{E}\right)$ of $\left(C, \sigma_{C}\right)$ by $\left(A, \sigma_{A}\right)$ is called reduced if
(1) γ is resolving, i.e., for $h \in \mathcal{H}_{A}$

$$
\begin{gathered}
\left(\gamma D_{*, A}(A(\xi))^{*} h=0 \text { for all } \xi \in \mathcal{E}\right) \Rightarrow \\
\left(D_{*, A}(A(\xi))^{*} h=0 \text { for all } \xi \in \mathcal{E}\right), \text { and }
\end{gathered}
$$

(2) $\left(A, \sigma_{A}\right)$ is c.n.c.

Definition
The characteristic function of reduced lifting $\left(E, \sigma_{E}\right)$ of $\left(C, \sigma_{C}\right)$
is defined as

Reduced liftings

Definition

A completely contractive lifting $\left(E, \sigma_{E}\right)$ of $\left(C, \sigma_{C}\right)$ by $\left(A, \sigma_{A}\right)$ is called reduced if
(1) γ is resolving, i.e., for $h \in \mathcal{H}_{A}$

$$
\begin{aligned}
& \left(\gamma D_{*, A}(A(\xi))^{*} h=0 \text { for all } \xi \in \mathcal{E}\right) \Rightarrow \\
& \left(D_{*, A}(A(\xi))^{*} h=0 \text { for all } \xi \in \mathcal{E}\right), \text { and }
\end{aligned}
$$

(2) $\left(A, \sigma_{A}\right)$ is c.n.c.

Definition

The characteristic function of reduced lifting $\left(E, \sigma_{E}\right)$ of $\left(C, \sigma_{C}\right)$ is defined as

$$
M_{C, E}:=\left.P_{\mathcal{F} \otimes \mathcal{D}_{C}} W\right|_{\mathcal{F} \otimes \mathcal{D}_{E}} .
$$

Main theorem

$$
\begin{aligned}
& M_{C, E}\left(L_{\xi} \otimes \mathbf{1}_{E}\right)=\left(L_{\xi} \otimes \mathbf{1}_{C}\right) M_{C, E}, \quad \xi \in \mathcal{E} \\
& W \mathcal{H}_{A}=\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \mathcal{K}\right] \ominus W\left(\mathcal{F} \otimes \mathcal{D}_{E}\right) \\
& =\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \triangle_{C, E}\left(\mathcal{F} \otimes \mathcal{D}_{E}\right)\right] \oplus\left\{M_{C, E} X \oplus \triangle_{C, E} x: x \in \mathcal{F} \otimes \mathcal{D}_{C}\right\}
\end{aligned}
$$

Theorem

For anv c.c.c. representation $\left(C, \sigma_{C}\right)$ of \mathcal{E}, the equivalence classes of characteristic functions are complete invariants for reduced liftings of $\left(C, \sigma_{C}\right)$ up to unitary equivalence.
$M_{C, E}$ is an element of generalized $H^{\infty}\left(\mathcal{D}_{E}, \mathcal{D}_{C}\right)$.

Main theorem

$$
\begin{aligned}
& M_{C, E}\left(L_{\xi} \otimes \mathbf{1}_{E}\right)=\left(L_{\xi} \otimes \mathbf{1}_{C}\right) M_{C, E}, \quad \xi \in \mathcal{E} \\
& W \mathcal{H}_{A}=\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \mathcal{K}\right] \ominus W\left(\mathcal{F} \otimes \mathcal{D}_{E}\right) \\
& =\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \overline{\Delta_{C, E}\left(\mathcal{F} \otimes \mathcal{D}_{E}\right)}\right] \ominus\left\{M_{C, E} x \oplus \Delta_{C, E} x: x \in \mathcal{F} \otimes \mathcal{D}_{C}\right\}
\end{aligned}
$$

Theorem

For any c.c.c. representation $\left(C, \sigma_{C}\right)$ of \mathcal{E}, the equivalence classes of characteristic functions are complete invariants for reduced liftings of $\left(C, \sigma_{C}\right)$ up to unitary equivalence.
$M_{C, E}$ is an element of generalized $H^{\infty}\left(\mathcal{D}_{E}, \mathcal{D}_{C}\right)$.

Main theorem

$$
\begin{aligned}
& M_{C, E}\left(L_{\xi} \otimes \mathbf{1}_{E}\right)=\left(L_{\xi} \otimes \mathbf{1}_{C}\right) M_{C, E}, \quad \xi \in \mathcal{E} \\
& W \mathcal{H}_{A}=\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \mathcal{K}\right] \ominus W\left(\mathcal{F} \otimes \mathcal{D}_{E}\right) \\
& =\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \overline{\Delta_{C, E}\left(\mathcal{F} \otimes \mathcal{D}_{E}\right)}\right] \ominus\left\{M_{C, E} x \oplus \Delta_{C, E} x: x \in \mathcal{F} \otimes \mathcal{D}_{C}\right\}
\end{aligned}
$$

Theorem

For any c.c.c. representation $\left(C, \sigma_{C}\right)$ of \mathcal{E}, the equivalence classes of characteristic functions are complete invariants for reduced liftings of $\left(C, \sigma_{C}\right)$ up to unitary equivalence.
$M_{C, E}$ is an element of generalized $H^{\infty}\left(\mathcal{D}_{E}, \mathcal{D}_{C}\right)$.

Main theorem

$$
\begin{aligned}
& M_{C, E}\left(L_{\xi} \otimes \mathbf{1}_{E}\right)=\left(L_{\xi} \otimes \mathbf{1}_{C}\right) M_{C, E}, \quad \xi \in \mathcal{E} \\
& W \mathcal{H}_{A}=\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \mathcal{K}\right] \ominus W\left(\mathcal{F} \otimes \mathcal{D}_{E}\right) \\
& =\left[\left(\mathcal{F} \otimes \mathcal{D}_{C}\right) \oplus \overline{\Delta_{C, E}\left(\mathcal{F} \otimes \mathcal{D}_{E}\right)}\right] \ominus\left\{M_{C, E} x \oplus \Delta_{C, E} x: x \in \mathcal{F} \otimes \mathcal{D}_{C}\right\}
\end{aligned}
$$

Theorem

For any c.c.c. representation $\left(C, \sigma_{C}\right)$ of \mathcal{E}, the equivalence classes of characteristic functions are complete invariants for reduced liftings of $\left(C, \sigma_{C}\right)$ up to unitary equivalence.
$M_{C, E}$ is an element of generalized $H^{\infty}\left(\mathcal{D}_{E}, \mathcal{D}_{C}\right)$.

References:

- S. Dey and R. Gohm: Characteristic functions of liftings, to appear in Journal of Operator Theory.
- P. Muhly and B. Solel: Tensor Algebras over C^{*}-Correspondences: Representations, Dilations, and C*-Envelopes, Journal of Functional Analysis 158 (1998), 389-457.
- M. Skeide: Generalised matrix C^{*}-algebras and representations of Hilbert modules, Math. Proc. R. Ir. Acad. 100A (2000), 11-38.

