Liftings of Covariant Representations of *W**-correspondences

Santanu Dey, Indian Institute of Technology Bombay

14.08.2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

1/19

Outline

- Representations
- Preliminaries
- 2 Dilations and Liftings
 - Dilations
 - Liftings

Representations Preliminaries

Introduction

For a Hilbert C*-module G, let L(G) the set of all adjointable operators on G.

- A \mathcal{G} over a von Neumann algebra \mathcal{M} can be equipped with the σ -topology induced by $f(.) = \sum_{n=1}^{\infty} \omega_n(\langle \xi_n, . \rangle)$ where $\sum \|\omega_n\| \|\xi_n\| < \infty$.
- \mathcal{G} is called *self-dual* if $\forall \phi : \mathcal{G} \to \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi) = \langle \xi_{\phi}, \xi \rangle, \qquad \xi \in \mathcal{G}.$
- For self-dual \mathcal{G} , $\mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W*-correspondence E is a self-dual Hilbert C*-bimodule over M, where the left action φ : M → L(E) is normal.
- $\varphi(\mathbf{a})\eta = \mathbf{a}\eta$ $\forall \mathbf{a} \in \mathcal{M}, \eta \in \mathcal{E}.$

Representations Preliminaries

- For a Hilbert C*-module G, let L(G) the set of all adjointable operators on G.
- A G over a von Neumann algebra M can be equipped with the σ-topology induced by f(.) = Σ_{n=1}[∞] ω_n(⟨ξ_n,.⟩) where Σ ||ω_n|| ||ξ_n|| < ∞.
- \mathcal{G} is called *self-dual* if $\forall \phi : \mathcal{G} \to \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi) = \langle \xi_{\phi}, \xi \rangle, \qquad \xi \in \mathcal{G}.$
- For self-dual \mathcal{G} , $\mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W*-correspondence ε is a self-dual Hilbert C*-bimodule over M, where the left action φ : M → L(ε) is normal.
- $\varphi(\mathbf{a})\eta = \mathbf{a}\eta$ $\forall \mathbf{a} \in \mathcal{M}, \eta \in \mathcal{E}.$

Representations Preliminaries

- For a Hilbert C*-module G, let L(G) the set of all adjointable operators on G.
- A *G* over a von Neumann algebra *M* can be equipped with the *σ*-topology induced by f(.) = ∑_{n=1}[∞] ω_n(⟨ξ_n,.⟩) where ∑ ||ω_n|| ||ξ_n|| < ∞.
- \mathcal{G} is called *self-dual* if $\forall \phi : \mathcal{G} \to \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi) = \langle \xi_{\phi}, \xi \rangle, \qquad \xi \in \mathcal{G}.$
- For self-dual \mathcal{G} , $\mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W*-correspondence E is a self-dual Hilbert C*-bimodule over M, where the left action φ : M → L(E) is normal.
- $\varphi(\mathbf{a})\eta = \mathbf{a}\eta$ $\forall \mathbf{a} \in \mathcal{M}, \eta \in \mathcal{E}.$

Representations Preliminaries

- For a Hilbert C*-module G, let L(G) the set of all adjointable operators on G.
- A *G* over a von Neumann algebra *M* can be equipped with the *σ*-topology induced by f(.) = ∑_{n=1}[∞] ω_n(⟨ξ_n,.⟩) where ∑ ||ω_n|| ||ξ_n|| < ∞.
- \mathcal{G} is called *self-dual* if $\forall \phi : \mathcal{G} \to \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi) = \langle \xi_{\phi}, \xi \rangle, \qquad \xi \in \mathcal{G}.$
- For self-dual \mathcal{G} , $\mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W*-correspondence E is a self-dual Hilbert C*-bimodule over M, where the left action φ : M → L(E) is normal.
- $\varphi(a)\eta = a\eta$ $\forall a \in \mathcal{M}, \eta \in \mathcal{E}.$

Representations Preliminaries

- For a Hilbert C*-module G, let L(G) the set of all adjointable operators on G.
- A *G* over a von Neumann algebra *M* can be equipped with the *σ*-topology induced by f(.) = ∑_{n=1}[∞] ω_n(⟨ξ_n,.⟩) where ∑ ||ω_n|| ||ξ_n|| < ∞.
- \mathcal{G} is called *self-dual* if $\forall \phi : \mathcal{G} \to \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi) = \langle \xi_{\phi}, \xi \rangle, \qquad \xi \in \mathcal{G}.$
- For self-dual \mathcal{G} , $\mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W*-correspondence *E* is a self-dual Hilbert C*-bimodule over *M*, where the left action φ : *M* → *L*(*E*) is normal.
- $\varphi(a)\eta = a\eta$ $\forall a \in \mathcal{M}, \eta \in \mathcal{E}.$

Representations Preliminaries

- For a Hilbert C*-module G, let L(G) the set of all adjointable operators on G.
- A *G* over a von Neumann algebra *M* can be equipped with the *σ*-topology induced by f(.) = ∑_{n=1}[∞] ω_n(⟨ξ_n,.⟩) where ∑ ||ω_n|| ||ξ_n|| < ∞.
- \mathcal{G} is called *self-dual* if $\forall \phi : \mathcal{G} \to \mathcal{M} \quad \exists \xi_{\phi} \in \mathcal{G}$ so that $\phi(\xi) = \langle \xi_{\phi}, \xi \rangle, \qquad \xi \in \mathcal{G}.$
- For self-dual \mathcal{G} , $\mathcal{L}(\mathcal{G})$ is a von Neumann algebra.
- A W*-correspondence *E* is a self-dual Hilbert C*-bimodule over *M*, where the left action φ : *M* → *L*(*E*) is normal.
- $\varphi(\mathbf{a})\eta = \mathbf{a}\eta \qquad \forall \mathbf{a} \in \mathcal{M}, \eta \in \mathcal{E}.$

Representations Preliminaries

Outline

- Representations
- Preliminaries
- Dilations and Liftings
 Dilations
 - Liftings

Representations Preliminaries

Covariant representations

Definition

A pair (T, σ) is called a covariant representation of \mathcal{E} over \mathcal{M} on a Hilbert space \mathcal{H} , if

(i) $T : \mathcal{E} \to B(\mathcal{H})$ is a linear map that is continuous (w.r.t. σ and ultra weak topology)

(ii) $\sigma: \mathcal{M} \to \mathcal{B}(\mathcal{H})$ is a normal homomorphism

(iii) $T(a\xi) = \sigma(a)T(\xi), T(\xi a) = T(\xi)\sigma(a)$ $\xi \in \mathcal{E}, a \in \mathcal{M}.$

Moreover if (T, σ) satisfies

$$T(\xi)^* T(\eta) = \sigma(\langle \xi, \eta \rangle), \qquad \xi, \eta \in \mathcal{E}$$

it is called isometric.

Representations Preliminaries

Covariant representations

Definition

A pair (T, σ) is called a covariant representation of \mathcal{E} over \mathcal{M} on a Hilbert space \mathcal{H} , if

(i) $T : \mathcal{E} \to B(\mathcal{H})$ is a linear map that is continuous (w.r.t. σ and ultra weak topology)

(ii) $\sigma: \mathcal{M} \to \mathcal{B}(\mathcal{H})$ is a normal homomorphism

(iii) $T(a\xi) = \sigma(a)T(\xi), T(\xi a) = T(\xi)\sigma(a)$ $\xi \in \mathcal{E}, a \in \mathcal{M}.$

Moreover if (T, σ) satisfies

$$T(\xi)^* T(\eta) = \sigma(\langle \xi, \eta \rangle), \qquad \xi, \eta \in \mathcal{E}$$

it is called isometric.

Representations Preliminaries

Outline

- Representations
- Preliminaries
- 2 Dilations and Liftings
 Dilations
 - Liftings

Representations Preliminaries

σ -dual

 For *E* over *M* and a normal *σ* : *M* → *B*(*H*) the induced tensor product *E* ⊗_{*σ*} *H* is the unique Hilbert space such that:

 $\langle \xi_1 \otimes h_1, \xi_2 \otimes h_2 \rangle = \langle h_1, \sigma(\langle \xi_1, \xi_2 \rangle) h_2 \rangle, \quad \xi_1, \xi_2 \in \mathcal{E}; h_1, h_2 \in \mathcal{H}.$

• Define σ -dual of \mathcal{E} as

 $\mathcal{E}^{\sigma} := \{ \mu \in \mathcal{B}(\mathcal{H}, \mathcal{E} \otimes_{\sigma} \mathcal{H}) : \mu \sigma(\mathbf{a}) = (\varphi(\mathbf{a}) \otimes \mathbf{1}) \mu \quad \forall \mathbf{a} \in \mathcal{M} \}.$

• Let (T, σ) of \mathcal{E} on \mathcal{H} be such that T is bounded. Then $\tilde{T} : \mathcal{E} \otimes \mathcal{H} \to \mathcal{H}$ can be associated with

$$\tilde{T}(\eta \otimes h) := T(\eta)h, \qquad \eta \in \mathcal{E}, h \in \mathcal{H}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Representations Preliminaries

 For *E* over *M* and a normal *σ* : *M* → *B*(*H*) the induced tensor product *E* ⊗_{*σ*} *H* is the unique Hilbert space such that:

 $\langle \xi_1 \otimes h_1, \xi_2 \otimes h_2 \rangle = \langle h_1, \sigma(\langle \xi_1, \xi_2 \rangle) h_2 \rangle, \quad \xi_1, \xi_2 \in \mathcal{E}; h_1, h_2 \in \mathcal{H}.$

• Define σ -dual of \mathcal{E} as

 $\mathcal{E}^{\sigma} := \{ \mu \in \mathcal{B}(\mathcal{H}, \mathcal{E} \otimes_{\sigma} \mathcal{H}) : \mu \sigma(\mathbf{a}) = (\varphi(\mathbf{a}) \otimes \mathbf{1}) \mu \quad \forall \mathbf{a} \in \mathcal{M} \}.$

• Let (T, σ) of \mathcal{E} on \mathcal{H} be such that T is bounded. Then $\tilde{T} : \mathcal{E} \otimes \mathcal{H} \to \mathcal{H}$ can be associated with

$$ilde{T}(\eta\otimes h):=T(\eta)h,\qquad \eta\in\mathcal{E},h\in\mathcal{H}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Representations Preliminaries

 For *E* over *M* and a normal *σ* : *M* → *B*(*H*) the induced tensor product *E* ⊗_{*σ*} *H* is the unique Hilbert space such that:

 $\langle \xi_1 \otimes h_1, \xi_2 \otimes h_2 \rangle = \langle h_1, \sigma(\langle \xi_1, \xi_2 \rangle) h_2 \rangle, \quad \xi_1, \xi_2 \in \mathcal{E}; h_1, h_2 \in \mathcal{H}.$

• Define σ -dual of \mathcal{E} as

 $\mathcal{E}^{\sigma} := \{ \mu \in \mathcal{B}(\mathcal{H}, \mathcal{E} \otimes_{\sigma} \mathcal{H}) : \mu \sigma(\mathbf{a}) = (\varphi(\mathbf{a}) \otimes \mathbf{1}) \mu \quad \forall \mathbf{a} \in \mathcal{M} \}.$

• Let (T, σ) of \mathcal{E} on \mathcal{H} be such that T is bounded. Then $\tilde{T} : \mathcal{E} \otimes \mathcal{H} \to \mathcal{H}$ can be associated with

$$\widetilde{T}(\eta \otimes h) := T(\eta)h, \qquad \eta \in \mathcal{E}, h \in \mathcal{H}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Representations Preliminaries

σ -dual

Lemma

let (T, σ) be a covariant representation of \mathcal{E} (i) T is completely contractive $\Leftrightarrow \|\tilde{T}\| \leq \mathbf{1}$ (ii) (T, σ) is isometric if and only if \tilde{T} is an isometry.

 $ilde{\mathcal{T}}^*$, when bounded is an element of \mathcal{E}^{σ} and converse.

Representations Preliminaries

σ -dual

Lemma

let (T, σ) be a covariant representation of \mathcal{E} (i) *T* is completely contractive $\Leftrightarrow \|\tilde{T}\| \leq \mathbf{1}$ (ii) (T, σ) is isometric if and only if \tilde{T} is an isometry.

\tilde{T}^* , when bounded is an element of \mathcal{E}^{σ} and converse.

Representations Preliminaries

Liftings

Definition

Let (C, σ_C) be a contractive covariant representation of \mathcal{E} on \mathcal{H}_C . Then a contractive covariant representation (E, σ_E) of \mathcal{E} on a $\mathcal{H}_E \supset \mathcal{H}_C$ is called a contractive lifting of (C, σ_C) if

(i) $\sigma_{E}(a)|_{\mathcal{H}_{C}} = P_{\mathcal{H}_{C}}\sigma_{E}(a)|_{\mathcal{H}_{C}} = \sigma_{C}(a) \quad a \in \mathcal{N}$ (ii) \mathcal{H}_{C}^{\perp} is invariant w.r.t. $E(\xi)$ for all $\xi \in \mathcal{E}$ (iii) $P_{\mathcal{H}_{C}}E(\xi)|_{\mathcal{H}_{C}} = C(\xi)$ for all $\xi \in \mathcal{E}$

Set $\mathcal{H}_A := \mathcal{H}_C^{\perp}$, $A(\xi) := E(\xi)|_{\mathcal{H}_A}$ and $\sigma_A(a) := \sigma_E(a)|_{\mathcal{H}_A}$ for all $\xi \in \mathcal{E}$, $a \in \mathcal{M}$.

Representations Preliminaries

Liftings

Definition

Let (C, σ_C) be a contractive covariant representation of \mathcal{E} on \mathcal{H}_C . Then a contractive covariant representation (E, σ_E) of \mathcal{E} on a $\mathcal{H}_E \supset \mathcal{H}_C$ is called a contractive lifting of (C, σ_C) if

(i)
$$\sigma_E(a)|_{\mathcal{H}_C} = P_{\mathcal{H}_C}\sigma_E(a)|_{\mathcal{H}_C} = \sigma_C(a) \quad a \in \mathcal{M}$$

(ii) $\alpha \in \mathcal{M}$

(ii)
$$\mathcal{H}_{\mathcal{C}}^{\perp}$$
 is invariant w.r.t. $E(\xi)$ for all $\xi \in \mathcal{E}$

(iii) $P_{\mathcal{H}_{\mathcal{C}}}E(\xi)|_{\mathcal{H}_{\mathcal{C}}} = C(\xi)$ for all $\xi \in \mathcal{E}$

Set $\mathcal{H}_A := \mathcal{H}_C^{\perp}$, $A(\xi) := E(\xi)|_{\mathcal{H}_A}$ and $\sigma_A(a) := \sigma_E(a)|_{\mathcal{H}_A}$ for all $\xi \in \mathcal{E}$, $a \in \mathcal{M}$.

Representations Preliminaries

Liftings

Definition

Let (C, σ_C) be a contractive covariant representation of \mathcal{E} on \mathcal{H}_C . Then a contractive covariant representation (E, σ_E) of \mathcal{E} on a $\mathcal{H}_E \supset \mathcal{H}_C$ is called a contractive lifting of (C, σ_C) if

(i)
$$\sigma_{E}(a)|_{\mathcal{H}_{C}} = P_{\mathcal{H}_{C}}\sigma_{E}(a)|_{\mathcal{H}_{C}} = \sigma_{C}(a) \quad a \in \mathcal{M}$$

(ii) \mathcal{H}_{C}^{\perp} is invariant w.r.t. $E(\xi)$ for all $\xi \in \mathcal{E}$
(iii) $P_{\mathcal{H}_{C}}E(\xi)|_{\mathcal{H}_{C}} = C(\xi)$ for all $\xi \in \mathcal{E}$

Set $\mathcal{H}_A := \mathcal{H}_C^{\perp}$, $A(\xi) := E(\xi)|_{\mathcal{H}_A}$ and $\sigma_A(a) := \sigma_E(a)|_{\mathcal{H}_A}$ for all $\xi \in \mathcal{E}$, $a \in \mathcal{M}$.

Dilations Liftings

Outline

- Representations
- Preliminaries
- Dilations and Liftings
 Dilations
 Liftings
 - Liftings

Dilations Liftings

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H} .

An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ) .

A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

 $\hat{\mathcal{H}} = \overline{span}\{V(\xi_1) \dots V(\xi_n)h : h \in \mathcal{H}, \xi_i \in \mathcal{E} \text{ for } i = 1, \dots n\}.$

Dilations Liftings

mid

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H} . An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ) . A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

 $\hat{\mathcal{H}} = \overline{span}\{V(\xi_1) \dots V(\xi_n)h : h \in \mathcal{H}, \xi_i \in \mathcal{E} \text{ for } i = 1, \dots n\}.$

Dilations Liftings

mid

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H} .

An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ) .

A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

 $\hat{\mathcal{H}} = \overline{span}\{V(\xi_1) \dots V(\xi_n)h : h \in \mathcal{H}, \xi_i \in \mathcal{E} \text{ for } i = 1, \dots n\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

11/19

Dilations Liftings

mid

Definition

Let (T, σ) be a completely contractive covariant (c.c.c. for short) representation of \mathcal{E} on \mathcal{H} .

An isometric dilation (V, π) of (T, σ) is an isometric covariant representation of \mathcal{E} on $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that (V, π) is a lifting of (T, σ) .

A minimal isometric dilation (mid) of (T, σ) is an isometric dilation (V, π) on $\hat{\mathcal{H}}$ for which

 $\hat{\mathcal{H}} = \overline{span}\{V(\xi_1) \dots V(\xi_n)h : h \in \mathcal{H}, \xi_i \in \mathcal{E} \text{ for } i = 1, \dots n\}.$

Dilations Liftings

Full Fock module

• $\mathcal{E} \otimes \mathcal{E}$ w.r.t.

 $\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \eta_1, \varphi(\langle \xi_1, \xi_2 \rangle) \eta_2 \rangle, \qquad \xi_1, \xi_2, \eta_1, \eta_2 \in \mathcal{E}.$

• Full Fock module over \mathcal{M} is

 $\mathcal{F}:=\oplus_{n=0}^{\infty}\mathcal{E}^{\otimes^n}$ where $\mathcal{E}^{\otimes^0}=\mathcal{M}$

• For $\xi \in \mathcal{E}$ $L_{\xi}\eta = \xi \otimes \eta \quad \forall \eta \in \mathcal{E}$ • Define $L \otimes \mathbf{1}_{\mathcal{D}_{T}} : \mathcal{E} \to B(\mathcal{F} \otimes \mathcal{D}_{T})$ by

 $(L\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}})(\xi)=L_{\xi}\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}}.$

Dilations Liftings

Full Fock module

• $\mathcal{E} \otimes \mathcal{E}$ w.r.t.

$$\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \eta_1, \varphi(\langle \xi_1, \xi_2 \rangle) \eta_2 \rangle, \qquad \xi_1, \xi_2, \eta_1, \eta_2 \in \mathcal{E}.$$

• Full Fock module over \mathcal{M} is

$$\mathcal{F} := \oplus_{n=0}^{\infty} \mathcal{E}^{\otimes^n}$$
 where $\mathcal{E}^{\otimes^0} = \mathcal{M}$

• For $\xi \in \mathcal{E}$ $L_{\xi}\eta = \xi \otimes \eta \quad \forall \eta \in \mathcal{E}$ • Define $L \otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}} : \mathcal{E} \to B(\mathcal{F} \otimes \mathcal{D}_{\mathcal{T}})$ by

 $(L\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}})(\xi)=L_{\xi}\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}}.$

Dilations Liftings

Full Fock module

• $\mathcal{E} \otimes \mathcal{E}$ w.r.t.

$$\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \eta_1, \varphi(\langle \xi_1, \xi_2 \rangle) \eta_2 \rangle, \qquad \xi_1, \xi_2, \eta_1, \eta_2 \in \mathcal{E}.$$

• Full Fock module over \mathcal{M} is

 $\mathcal{F}:=\oplus_{n=0}^{\infty}\mathcal{E}^{\otimes^n} \text{ where } \mathcal{E}^{\otimes^0}=\mathcal{M}$

• For $\xi \in \mathcal{E}$ $L_{\xi}\eta = \xi \otimes \eta \quad \forall \eta \in \mathcal{E}$ • Define $L \otimes \mathbf{1}_{\mathcal{D}_{T}} : \mathcal{E} \to B(\mathcal{F} \otimes \mathcal{D}_{T})$ by

 $(L\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}})(\xi)=L_{\xi}\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}}.$

Dilations Liftings

Full Fock module

• $\mathcal{E} \otimes \mathcal{E}$ w.r.t.

$$\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \eta_1, \varphi(\langle \xi_1, \xi_2 \rangle) \eta_2 \rangle, \qquad \xi_1, \xi_2, \eta_1, \eta_2 \in \mathcal{E}.$$

• Full Fock module over \mathcal{M} is

 $\mathcal{F} := \oplus_{n=0}^{\infty} \mathcal{E}^{\otimes^n}$ where $\mathcal{E}^{\otimes^0} = \mathcal{M}$

• For $\xi \in \mathcal{E}$ $L_{\xi}\eta = \xi \otimes \eta \quad \forall \eta \in \mathcal{E}$ • Define $L \otimes \mathbf{1}_{\mathcal{D}_{T}} : \mathcal{E} \to B(\mathcal{F} \otimes \mathcal{D}_{T})$ by

$$(L\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}})(\xi) = L_{\xi}\otimes \mathbf{1}_{\mathcal{D}_{\mathcal{T}}}.$$

Dilations Liftings

Presentation of mid

• Set
$$D_{*,T} := (\mathbf{1} - \tilde{T}\tilde{T}^*)^{\frac{1}{2}}$$
 (in $B(\mathcal{H})$)
and $D_T := (\mathbf{1} - \tilde{T}^*\tilde{T})^{\frac{1}{2}}$ (in $B(\mathcal{E} \otimes_{\sigma} \mathcal{H})$).

• Let $\mathcal{D}_{*,T} := \overline{\text{range } D_{*,T}}$ and $\mathcal{D}_T = \overline{\text{range } D_T}$.

Every c.c.c. representation (*T*, σ) of *E* has a mid (*V*, π), with the representation Hilbert space:

$$\hat{\mathcal{H}} = \mathcal{H} \oplus \mathcal{F} \otimes_{\sigma_1} \mathcal{D}_{\mathcal{T}}$$

$$V(\xi) = \begin{pmatrix} T(\xi) & 0 & 0 & \dots \\ D_T(\xi \otimes .) & 0 & 0 & \dots \\ 0 & 1 & 0 & \\ 0 & 0 & 1 & \\ & & & \ddots \end{pmatrix}$$

Dilations Liftings

Presentation of mid

• Set
$$D_{*,T} := (\mathbf{1} - \tilde{T}\tilde{T}^*)^{\frac{1}{2}}$$
 (in $B(\mathcal{H})$)
and $D_T := (\mathbf{1} - \tilde{T}^*\tilde{T})^{\frac{1}{2}}$ (in $B(\mathcal{E} \otimes_{\sigma} \mathcal{H})$).

• Let $\mathcal{D}_{*,T} := \overline{\text{range } D_{*,T}}$ and $\mathcal{D}_T = \overline{\text{range } D_T}$.

Every c.c.c. representation (*T*, σ) of *E* has a mid (*V*, π), with the representation Hilbert space:

$$\hat{\mathcal{H}} = \mathcal{H} \oplus \mathcal{F} \otimes_{\sigma_1} \mathcal{D}_{\mathcal{T}}$$

$$V(\xi) = \begin{pmatrix} T(\xi) & 0 & 0 & \dots \\ D_T(\xi \otimes .) & 0 & 0 & \dots \\ 0 & 1 & 0 & \\ 0 & 0 & 1 & \\ & & \ddots \end{pmatrix}$$

Dilations Liftings

Presentation of mid

• Set
$$D_{*,T} := (\mathbf{1} - \tilde{T}\tilde{T}^*)^{\frac{1}{2}}$$
 (in $B(\mathcal{H})$)
and $D_T := (\mathbf{1} - \tilde{T}^*\tilde{T})^{\frac{1}{2}}$ (in $B(\mathcal{E} \otimes_{\sigma} \mathcal{H})$)

- Let $\mathcal{D}_{*,T} := \overline{\text{range } D_{*,T}}$ and $\mathcal{D}_T = \overline{\text{range } D_T}$.
- Every c.c.c. representation (*T*, *σ*) of *E* has a mid (*V*, *π*), with the representation Hilbert space:

$$\hat{\mathcal{H}} = \mathcal{H} \oplus \mathcal{F} \otimes_{\sigma_1} \mathcal{D}_T$$

$$V(\xi) = \begin{pmatrix} T(\xi) & 0 & 0 & \dots \\ D_T(\xi \otimes .) & 0 & 0 & \dots \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ & & \ddots \end{pmatrix}$$

<ロト < 同ト < 回ト < 回ト = 三日

Dilations Liftings

Outline

- Representations
- Preliminaries

- Dilations
- Liftings

Dilations Liftings

Intertwining unitary

Let (*E*, σ_E) be a contractive lifting of (*C*, σ_C). Clearly mid (*V^C*, π_C) is embedded in (*V^E*, π_E). We introduce a c.c.c. representation (*Y*, π_Y) on the orthogonal complement *K* of the space of mid (*V^C*, π_C) to encode this.

• Hence we can get a unitary W such that

 $W: \mathcal{H}_{E} \oplus (\mathcal{F} \otimes \mathcal{D}_{E}) \to \mathcal{H}_{C} \oplus (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \mathcal{K}$ $\hat{V}^{E}(\xi)W = WV^{E}(\xi), \quad (\pi_{C} \oplus \pi_{Y})(a)W = W\pi_{E}(a),$ $W|_{\mathcal{H}_{C}} = \mathbf{1}|_{\mathcal{H}_{C}}, \text{with} \quad \hat{V}^{E}(\xi) = V^{C}(\xi) \oplus Y(\xi)$

Dilations Liftings

Intertwining unitary

- Let (*E*, σ_E) be a contractive lifting of (*C*, σ_C). Clearly mid (*V^C*, π_C) is embedded in (*V^E*, π_E). We introduce a c.c.c. representation (*Y*, π_Y) on the orthogonal complement *K* of the space of mid (*V^C*, π_C) to encode this.
- Hence we can get a unitary W such that

$$\begin{split} W : \mathcal{H}_{E} \oplus (\mathcal{F} \otimes \mathcal{D}_{E}) &\to \mathcal{H}_{C} \oplus (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \mathcal{K} \\ \hat{V}^{E}(\xi) W = W V^{E}(\xi), \quad (\pi_{C} \oplus \pi_{Y})(a) W = W \pi_{E}(a), \\ W|_{\mathcal{H}_{C}} = \mathbf{1}|_{\mathcal{H}_{C}}, \text{with} \quad \hat{V}^{E}(\xi) = V^{C}(\xi) \oplus Y(\xi) \end{split}$$

Dilations Liftings

Lemma

 (E, σ_E) is c.c.c. if and only if (C, σ_C) and (A, σ_A) are c.c.c. and \exists a contraction $\gamma : \mathcal{D}_{*,A} \to \mathcal{D}_C$ such that

$$\tilde{B}=D_{*,A}\gamma^*D_C.$$

 (A, σ_A) is called *completely non-coisometric (c.n.c.),* if $\mathcal{H}^1_A := \{h \in \mathcal{H}_A : \|(\tilde{A}^n)^*h\| = \|h\|$ for all $n \in \mathbb{N}\} = 0$.

<ロト < 昂 > < 臣 > < 臣 > 三 のへの 16/19

Dilations Liftings

Lemma

 (E, σ_E) is c.c.c. if and only if (C, σ_C) and (A, σ_A) are c.c.c. and \exists a contraction $\gamma : \mathcal{D}_{*,A} \to \mathcal{D}_C$ such that

$$\tilde{B} = D_{*,A} \gamma^* D_C.$$

16/19

 (A, σ_A) is called *completely non-coisometric (c.n.c.)*, if $\mathcal{H}^1_A := \{h \in \mathcal{H}_A : \|(\tilde{A}^n)^*h\| = \|h\|$ for all $n \in \mathbb{N}\} = 0$.

Dilations Liftings

Reduced liftings

Definition

A completely contractive lifting (E, σ_E) of (C, σ_C) by (A, σ_A) is called reduced if

)
$$\gamma$$
 is resolving, i.e., for $h \in \mathcal{H}_{\mathcal{A}}$

$$(\gamma D_{*,\mathcal{A}}(\mathcal{A}(\xi))^*h = 0 \text{ for all } \xi \in \mathcal{E}) \Rightarrow$$

 $(D_{*,\mathcal{A}}(\mathcal{A}(\xi))^*h = 0 \text{ for all } \xi \in \mathcal{E}), \text{ and}$

2 $(\mathbf{A}, \sigma_{\mathbf{A}})$ is c.n.c.

Definition

The characteristic function of reduced lifting (E, σ_E) of (C, σ_C) is defined as

$$M_{C,E} := P_{\mathcal{F} \otimes \mathcal{D}_C} W|_{\mathcal{F} \otimes \mathcal{D}_E}.$$

Dilations Liftings

Reduced liftings

Definition

A completely contractive lifting (E, σ_E) of (C, σ_C) by (A, σ_A) is called reduced if

)
$$\gamma$$
 is resolving, i.e., for $h \in \mathcal{H}_{\mathcal{A}}$

$$(\gamma D_{*,A}(A(\xi))^*h = 0 \text{ for all } \xi \in \mathcal{E}) \Rightarrow$$

 $(D_{*,A}(A(\xi))^*h = 0 \text{ for all } \xi \in \mathcal{E}), \text{ and}$

2 $(\mathbf{A}, \sigma_{\mathbf{A}})$ is c.n.c.

Definition

The characteristic function of reduced lifting (E, σ_E) of (C, σ_C) is defined as

$$M_{C,E} := P_{\mathcal{F} \otimes \mathcal{D}_C} W|_{\mathcal{F} \otimes \mathcal{D}_E}.$$

Dilations and Liftings References Dilations Main theorem

$M_{C,E}(L_{\xi}\otimes \mathbf{1}_{E})=(L_{\xi}\otimes \mathbf{1}_{C})M_{C,E}, \qquad \xi\in \mathcal{E}.$

 $W\mathcal{H}_{A} = \big[(\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \mathcal{K} \big] \ominus W(\mathcal{F} \otimes \mathcal{D}_{E})$

 $= \left[(\mathcal{F} \otimes \mathcal{D}_{\mathcal{C}}) \oplus \overline{\Delta_{\mathcal{C},\mathcal{E}}(\mathcal{F} \otimes \mathcal{D}_{\mathcal{E}})} \right] \ominus \{ M_{\mathcal{C},\mathcal{E}} \, x \oplus \Delta_{\mathcal{C},\mathcal{E}} \, x : x \in \mathcal{F} \otimes \mathcal{D}_{\mathcal{C}} \}$

Theorem

For any c.c.c. representation (C, σ_C) of \mathcal{E} , the equivalence classes of characteristic functions are complete invariants for reduced liftings of (C, σ_C) up to unitary equivalence.

$$\begin{split} M_{C,E}(L_{\xi} \otimes \mathbf{1}_{E}) &= (L_{\xi} \otimes \mathbf{1}_{C})M_{C,E}, \qquad \xi \in \mathcal{E}. \\ W\mathcal{H}_{A} &= \begin{bmatrix} (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \mathcal{K} \end{bmatrix} \ominus W(\mathcal{F} \otimes \mathcal{D}_{E}) \\ &= \begin{bmatrix} (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \overline{\Delta_{C,E}(\mathcal{F} \otimes \mathcal{D}_{E})} \end{bmatrix} \ominus \{M_{C,E} \, x \oplus \Delta_{C,E} \, x : x \in \mathcal{F} \otimes \mathcal{D}_{C} \} \end{split}$$

Theorem

For any c.c.c. representation (C, σ_C) of \mathcal{E} , the equivalence classes of characteristic functions are complete invariants for reduced liftings of (C, σ_C) up to unitary equivalence.

$$\begin{split} M_{C,E}(L_{\xi} \otimes \mathbf{1}_{E}) &= (L_{\xi} \otimes \mathbf{1}_{C})M_{C,E}, \qquad \xi \in \mathcal{E}. \\ W\mathcal{H}_{A} &= \begin{bmatrix} (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \mathcal{K} \end{bmatrix} \ominus W(\mathcal{F} \otimes \mathcal{D}_{E}) \\ &= \begin{bmatrix} (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \overline{\Delta_{C,E}(\mathcal{F} \otimes \mathcal{D}_{E})} \end{bmatrix} \ominus \{M_{C,E} \, x \oplus \Delta_{C,E} \, x : x \in \mathcal{F} \otimes \mathcal{D}_{C} \} \end{split}$$

Theorem

For any c.c.c. representation (C, σ_C) of \mathcal{E} , the equivalence classes of characteristic functions are complete invariants for reduced liftings of (C, σ_C) up to unitary equivalence.

$$\begin{split} M_{C,E}(L_{\xi} \otimes \mathbf{1}_{E}) &= (L_{\xi} \otimes \mathbf{1}_{C})M_{C,E}, \qquad \xi \in \mathcal{E}. \\ W\mathcal{H}_{A} &= \begin{bmatrix} (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \mathcal{K} \end{bmatrix} \ominus W(\mathcal{F} \otimes \mathcal{D}_{E}) \\ &= \begin{bmatrix} (\mathcal{F} \otimes \mathcal{D}_{C}) \oplus \overline{\Delta_{C,E}(\mathcal{F} \otimes \mathcal{D}_{E})} \end{bmatrix} \ominus \{M_{C,E} \, x \oplus \Delta_{C,E} \, x : x \in \mathcal{F} \otimes \mathcal{D}_{C} \} \end{split}$$

Theorem

For any c.c.c. representation (C, σ_C) of \mathcal{E} , the equivalence classes of characteristic functions are complete invariants for reduced liftings of (C, σ_C) up to unitary equivalence.

- S. Dey and R. Gohm: Characteristic functions of liftings, to appear in *Journal of Operator Theory.*
- P. Muhly and B. Solel: Tensor Algebras over C*-Correspondences: Representations, Dilations, and C*-Envelopes, Journal of Functional Analysis 158 (1998), 389–457.
- M. Skeide: Generalised matrix C*-algebras and representations of Hilbert modules, *Math. Proc. R. Ir. Acad.* 100A (2000), 11–38.