Inclusions of unital C*-algebras and the Rokhlin property

Hiroyuki Osaka (Ritsumeikan University, Japan)

International Conference on Quantum Propbability and related topics August 14 - 17, 2010

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Motivation

Let $P \subset A$ be an inclusion of unital C*-algebras.

It is a natural question whether there is a relation in several permanent properties between P and A.

For example, let A be a unital C*-algebra and α an (amenable) action from a discrete group G on A, and $A \rtimes_{\alpha} G$ its crossed product algebra. Then several properties of A can be transmitted to $A \rtimes_{\alpha} G$. $A \subset A \rtimes_{\alpha} G$

Conditions for A	G	lpha	$A\rtimes_{\alpha} G$
(1) Simplicity	any	outer	\bigcirc
(2) Property (SP) + Simplicity	any	outer	\bigcirc
(3) Stable rank one	Ζ	any	≤ 2
(2) + (3)	finite	any	≤ 2
(4) Real rank zero	?	?	?
(5) Extremal richness	finite	Rokhlin	\bigcirc
(6)Cancellation + (2) + (3)	finite	any	\bigcirc
		$\alpha_* = \mathrm{id}_0$	\bigcirc
(7) \mathcal{Z} -stability	finite	Rokhlin	\bigcirc
		Rokhlin	
(8) The order on projections	finite	Rokhlin	\bigcirc
is determined by traces			
(6)Cancellation $+$ (2) $+$ (3) (7) \mathcal{Z} -stability (8) The order on projections	finite Z finite Z	$lpha_* = \mathrm{id}_0$ Rokhlin Rokhlin	

To generalize the above results for an inclusion of unital C*-algebras $P \subset A$ we will give an attention to a canonical conditional expectation $E: A \rtimes_{\alpha} G \to A$ by $E(\sum_{g} a_{g}u_{g}) = a_{0}$, where $u: G \to A \rtimes_{\alpha} G$ is a unitary representation such that $u_{g}au_{g}^{*} = \alpha_{g}(a)$ for any $a \in A$ and $g \in G$.

In this talk we assume that there is a faithful conditional expectation $E: A \rightarrow P$.

The following is the contents of this talk:

- 1. Simplicity
- 2. Property (SP)
- 3. Low ranks
- 4. Cancellation
- 5. Rokhlin property
- 6. Applications

Simplicity

Definition 1 (Osaka:98). Let $1 \in A \subset B$ be a pair of C*-algebras. Then we say that a conditional expectation $E: B \to A$ is outer if for any element $x \in B$ with E(x) = 0 and any nonzero hereditary C*-subalgebra C of A (i.e., if $c \in C$ and $a \in A$ satisfy $0 \le a \le c$, then $a \in C$)

 $\inf\{\|cxc\|: c \in C^+, \|c\| = 1\} = 0.$

We note that Kishimoto showed in [Kishimoto:81] that if A is simple unital C*-algebra and α is a representation of a discrete group G onto the set Aut(A) of automorphisms on A, is outer, then the canonical conditional expectation from the reduced crossed product algebra $A \rtimes_{\alpha r} G$ to A is outer.

Theorem 2 (O-Teruya:10). Let $1 \in A \subset B$ be a pair of C*-algebras and E be a faithful conditional expectation from B to A. Suppose that A is simple and E is outer. Then B is simple.

For further topics we recall Watatani C*-index theory.

Definition 3 (Watatani:90). Let $P \subset A$ be an inclusion of unital C*-algebras with a conditional expectation E from A onto P.

1. A quasi-basis for E is a finite set $\{(u_i, v_i)\}_{i=1}^n \subset A \times A$ such that for every $a \in A$,

$$a = \sum_{i=1}^{n} u_i E(v_i a) = \sum_{i=1}^{n} E(au_i) v_i.$$

2. When $\{(u_i, v_i)\}_{i=1}^n$ is a quasi-basis for E, we define IndexE by

$$\mathrm{Index}E = \sum_{i=1}^{n} u_i v_i.$$

When there is no quasi-basis, we write $Index E = \infty$. Index E is called the Watatani index of E.

Remark 4. We give several remarks about the above definitions.

- 1. Index E does not depend on the choice of the quasi-basis in the above formula, and it is a central element of A.
- 2. Once we know that there exists a quasi-basis, we can choose one of the form $\{(w_i, w_i^*)\}_{i=1}^m$, which shows that IndexE is a positive element.
- 3. By the above statements, if A is a simple C^* -algebra, then IndexE is a positive scalar.
- 4. If $\text{Index} E < \infty$, then E is faithful, that is, $E(x^*x) = 0$ implies x = 0 for $x \in A$.
- 5. If $\text{Index} E < \infty$, then there is a basic construction $C^*\langle A, e_p \rangle$ such that

$$C^*\langle A, e_p \rangle = \{\sum_{i=1}^n x_i e_P y_i : x_i, y_i \in A, n \in \mathbf{N}\}$$

and

$$P \subset A \subset C^* \langle A, e_p \rangle,$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

where e_p is called the Jones projection which satisfies $e_p a e_p = E(a) e_p$ for $a \in A$ and $e_p x = x e_p$ for $x \in P$.

6. If IndexE is finite, then IndexE is a central invertible element of A and there is the dual conditional expectation \hat{E} from $C^*\langle A, e_P \rangle$ onto A such that

$$\hat{E}(xe_Py) = (\text{Index}E)^{-1}xy \text{ for } x, y \in A$$

by Proposition 2.3.2 of [Watatani:90]. Moreover, \hat{E} has a finite index and faithfulness.

The following is a model for an inclusion of unital C*-algebras:

Let A be a unital C*-algebra and α an action of a finite group G on A. Suppose that α is outer. Then

$$A^G \subset A \subset A \rtimes_\alpha G$$

is a basic construction.

Theorem 5 (Izumi:02). Let $P \subset A$ be an inclusion of unital C*-algebras with index finite type.

- 1. Suppose that P is simple, then A can be realized as finite direct sums of simple C*-algebras.
- 2. Suppose that A is simple, then P can be realized as finite direct sums of simple C*-algebras.

Theorem 6 (O-Teruya:10). Let a conditional expectation $E: A \rightarrow P$ be of index finite type and let $P \subset A \subset B$ a basic construction, that is, $B = \operatorname{span}\{a_1e_pa_2: a_1, a_2 \in A\}$ and e_p is the Jones projection correspondent to E.

Suppose that there is a projection $e \in A' \cap A^{\infty}$ such that $ee_p e = (\text{Index}E)^{-1}e$. Then the dual conditional expectation $\hat{E} \colon B \to A$ is outer. In this case if A is simple, then P is simple.

For a C^* -algebra A, we set

$$c_0(A) = \{(a_n) \in l^{\infty}(\mathbf{N}, A) : \lim_{n \to \infty} ||a_n|| = 0\}$$
$$A^{\infty} = l^{\infty}(\mathbf{N}, A)/c_0(A).$$

Property (SP)

Definition 7. A C*-algebra A is said to have Property (SP) if any nonzero hereditary C*-subalgebra of A has nonzero projection.

Theorem 8 (Osaka:01). Let $P \subset A$ be an inclusion of unital C*-algebras and $E: A \rightarrow P$ be a conditional expectation of index finite type.

- 1. Suppose that A is simple and has Property (SP). Then P has Property (SP).
- 2. Suppose that P is simple and has Property (SP). Then A has Property (SP).

Low ranks

Here low ranks for C*-algebras mean *stable rank* one, real rank zero, and extremal richness.

Definition 9 (Rieffel:86). For a unital C*-algebra A the topological stable rank tsr(A) of A is defined to be the least integer n such that the set $Lg_n(A)$ of all n-tuples $(a_1, a_2, \ldots, a_n) \in A^n$ which generate A as a left ideal is dense in A^n .

The topological stable rank of a nonunital C*algebra is defined to be that of its smallest unitization.

Note that

- 1. tsr(A) = 1 is equivalent to the density of the set of invertible elements in A.
- 2. If X is a locally compact Hausdorff space, $\operatorname{tsr}(C_0(X)) = \left[\frac{1}{2}\dim(X \cup \{\infty\})\right] + 1.$
- 3. Let A be an AF algebra. Then tsr(A) = 1.
- 4. [Rieffel:86] Let A be a C*-algebra and α be an automorphism on A. Then $tsr(A \rtimes_{\alpha} \mathbf{Z}) \leq tsr(A) + 1$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

- 5. [Putnam:90] Irrational rotation algebras have topologigal stable rank one.
- 6. [Rieffel:86] Let A be a unital C*-algebra with $\operatorname{tsr}(A)=1.$ Then

 $U(A)/U_0(A) \cong K_1(A).$

Theorem 10 (O-Teruya:07). Let $P \subset A$ be a unital C*-algebras of index finite and depth 2. Suppose that P is simple with tsr(P) = 1 and Property (SP). Then

$$\operatorname{tsr}(A) \le 2.$$

The inclusion $1 \in A \subset B$ of unital C*-algebras of index-finite type is said to have *finite depth k* if the derived tower obtained by iterating the basic construction

$$A' \cap A \subset A' \cap B \subset A' \cap B_2 \subset A' \cap B_3 \subset \cdots$$

satisfies $(A' \cap B_k)e_k(A' \cap B_k) = A' \cap B_{k+1}$, where $\{e_k\}_{k\geq 1}$ are projections derived obtained by iterating the basic construction such that $B_{k+1} = C^*(B_k, e_k)$ ($k \geq 1$) ($B_1 = B, e_1 = e_A$). Let $E_k : B_{k+1} \to B_k$ be a faithful conditional expectation correspondent to e_k for $k \geq 1$.

Corollary 11. Let A be a simple C*-algebra with tsr(A) = 1 and Property (SP), and α an action of a finite group G on A. Then

$$\operatorname{tsr}(A \rtimes_{\alpha} G) \le 2.$$

The following is still a open question.

Problem 12 (Blackadar:90). Let A be a AF C*algebra and α be an action of a finite group on A. Then $tsr(A \rtimes_{\alpha} G) = 1$?

In particular, $tsr(CAR \rtimes_{\alpha} \mathbf{Z}/2\mathbf{Z}) = 1$?

The following is a general estimate for stable rank for an inclusion of unital C*-algebras.

Theorem 13 (Kodaka-O-Jeong-Phillips:09). Let $P \subset A$ be an inclusion of unital C*-algebras and $\{(v_k, v_k^*)\}_{k=1}^n$ be a quasi-basis for $E: A \to P$. Then

$$\operatorname{tsr}(A) \le \operatorname{tsr}(P) + n - 1.$$

Corollary 14. Let A be a unital C*-algebra and α be an action from a finite group G on A. Then

$$\operatorname{tsr}(A \rtimes_{\alpha} G) \le \operatorname{tsr}(A) + |G| - 1.$$

Definition 15 (Brown-Pedersen:91). For a unital C*algebra A the *Real rank* RR(A) of A is defined to be the least integer n such that the set $Lg_{n+1}(A_{sa})$ of all n + 1-tuples $(a_0, a_1, a_2 \dots, a_n) \in A_{sa}^{n+1}$ which generate A_{sa} as a left ideal is dense in A_{sa}^{n+1} .

The real rank of a nonunital C*-algebra is defined to be that of its smallest unitization.

Note that

- 1. RR(A) = 0 is equivalent to the density of the set of invertible self-adjoint elements in A_{sa} .
- 2. If X is a locally compact Hausdorff space, $tsr(C_0(X)) = dim(X \cup \{\infty\}).$
- 3. The only general relation between tsr and RR is $RR(A) \leq 2tsr(A) 1$.
- 4. [Brown-Pedersen:91] If A is a σ -unital C*-algebra with $\operatorname{RR}(A) = 0$, then it has an approximate identity consisting of projections.
- 5. Inductive limits of C*-algebras with real rank zero (resp. stable rank one) have real rank zero (resp. stable rank one). In particular, RR(AF) = 0.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Stable rank and real rank play important roles in the classification of simple unital, separable, nuclear, C*-algebras.

Cancellation

Definition 16. For two projections p, q in a C*algebra A, we write $p \sim q$ if they are Murrayvon Neumann equivalent, that is, there is a partial isometry $s \in A$ such that $s^*s = p$ and $ss^* = q$. A C*algebra A is said to have cancellation of projections if whenever $p, q, r \in A$ are projections with $p \perp r$, $q \perp r$, and $p + r \sim q + r$, then $p \sim q$. If the matrix algebra $M_n(A)$ over A has cancellation of projections for each $n \in \mathbf{N}$, we simply say that A has cancellation.

Note that

- 1. Every C*-algebra A with cancellation is stably finite, that is, for $n \in \mathbb{N}$ if $x \in M_n(A)$ satisfies $x^*x = 1$, then $xx^* = 1$.
- 2. Every unital C*-algebra of stable rank one has cancellation.
- 3. [Blackadar-Handelman:82] + [Brown-Pedersen:91] Let A be a unital C*-algebra with cancellation and RR(A) = 0. Then tsr(A) = 1.

Theorem 17 (Jeong-O-Phillips-Teruya:09). Let $1 \in A \subset B$ be an inclusion of unital C*-algebras of indexfinite type and with finite depth. Suppose that A is simple, tsr(A) = 1, and A has Property (SP). Then B has cancellation.

Corollary 18. Let $1 \in A \subset B$ be a pair of unital C*algebras of index-finite type and with finite depth. Suppose that A is simple with tsr(A) = 1 and Property (SP), and that B has real rank zero. Then tsr(B) = 1.

Corollary 19. Let A be an infinite dimensional simple unital C*-algebra, let G be a finite group, and let α be an action of G on A. Suppose that tsr(A) = 1 and A has Property (SP). Then $A \rtimes_{\alpha} G$ has cancellation. Moreover, if $A \rtimes_{\alpha} G$ has real rank zero, then $tsr(A \rtimes_{\alpha} G) = 1$.

Let $\alpha \in \operatorname{Aut}(A)$ be an automorphism of a C*algebra A. There is no conditional expectation of index-finite type from $A \rtimes_{\alpha} \mathbb{Z}$ onto A. Nevertheless, we have the following result.

Theorem 20 (Jeong-O-Phillips-Teruya:09). Let A be a simple unital C*-algebra with tsr(A) = 1 and Property (SP). Let $\alpha \in Aut(A)$ generate an outer action of \mathbf{Z} on A such that $\alpha_* = id$ on $K_0(A)$. Then $A \rtimes_{\alpha} \mathbf{Z}$ has cancellation.

Rokhlin property

Definition 21 (Izumi:04). Let α be an action of a finite group G on a unital C^* -algebra A. α is said to have the *Rokhlin property* if there exists a partition of unity $\{e_g\}_{g\in G} \subset A' \cap A^{\infty}$ consisting of projections satisfying

$$(\alpha_g)_{\infty}(e_h) = e_{gh}$$
 for $g, h \in G$.

We call $\{e_g\}_{g \in G}$ Rokhlin projections.

Motivated by Definition 21 Kodaka, Osaka, and Teruya introduced the Rokhlin property for a inclusion of unital C*-algebras with a finite index.

Definition 22. A conditional expectation E of a unital C^* -algebra A with a finite index is said to have the *Rokhlin property* if there exists a projection $e \in A' \cap A^{\infty}$ satisfying

$$E^{\infty}(e) = (\text{Index}E)^{-1} \cdot 1$$

and a map $A \ni x \mapsto xe$ is injective. We call e a Rokhlin projection.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Theorem 23 (Kodaka-O-Teruya:09). Let a conditional expectation $E: A \rightarrow P$ be of index finite type and have the Rokhlin property. Then if A is simple, then P is simple.

Theorem 24 (Kodaka-O-Teruya:09). Let a conditional expectation $E: A \rightarrow P$ be of index finite type and have the Rokhlin property.

- 1. If tsr(A) = 1, then tsr(P) = 1.
- 2. If $\operatorname{RR}(A) = 0$, then $\operatorname{RR}(P) = 0$.

Definition 25. Let A be a unital C*-algebra. We denote by T(A) the set of all tracial states on A, equipped with the weak* topology. For any element of T(A), we use the same letter for its standard extension to $M_n(A)$ for arbitrary n, and to $M_{\infty}(A) = \bigcup_{n=1}^{\infty} M_n(A)$.

We say that the order on projections over a unital C*-algebra A is determined by traces if whenever $p, q \in M_{\infty}(A)$ are projections such that $\tau(p) < \tau(q)$ for all $\tau \in T(A)$, then $p \leq q$.

Proposition 26. [O-Teruya:10] Let $E: A \to P$ be of index finite type and has the Rokhlin property. Then the restriction map defines a bijection from the set T(A) to the set T(P).

Theorem 27. [O-Teruya:10] Let A be a unital C*algebra such that the order on projections over A is determined by traces. Let $E: A \rightarrow P$ be of index finite type. Suppose that E has the Rokhlin property. Then the order on projections over P is determined by traces.

Applications

In this section we show several results related to the classification problem of simple unital, separable, nuclear, stably finite C*-algebras.

For a unital C*-algebra the Elliott invariant of A, Ell(A) is the 4-tuple,

 $((K_0(A), K_0(A)^+, [1_A]_0), K_1(A), T(A), r_A),$

where $S(K_0(A))$ is the state space of $K_0(A)$, that is, the set of all homomorphisms $f: K_0(A) \to \mathbf{R}$ such that $f(K_0(A)^+) \subset \mathbf{R}^+$ and $f([1_A]_0) = 1$, and $r_A: T(A) \to S(K_0(A))$ defined by

$$r(\tau)([p]_0 - [q]_0) = \tau(p) - \tau(q)$$

for $\tau \in T(A)$ and $[p]_0 - [q]_0 \in K_0(A)$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

The "original" statement of the Elliott conjecture for simple unital, separable, nuclear, C*-algebras as follows:

Conjecture 28 (EC). Let A and B be simple unital, separable, nuclear, C*-algebras, and suppose that there exists an isomorphism $\phi \colon \text{Ell}(A) \to \text{Ell}(B)$. Then there is a *-isomorphism $\Phi \colon A \to B$ which induces ϕ .

We stress that the following references will be useful for reader to desire a fuller introduction to the classification program:

- M.Rørdam, A classification of nuclear C*-algebras, Encyclopaedia of Mathematical Sciences 126, Springer-Verlag, Berlin, Heidelberg, 2002.
- G. A. Elliott and A. S. Toms, Regularity properties in the classification program for separable amenable C*-algebras, Bull. Amer. Math. Soc., 45(2008), no.2, 229 - 245.

Theorem 29 (Elliott-Gong:96, Dădărlat:95,Gong:97). (EC) holds among simple unital AH algebras with slow dimension growth and real rank zero.

Here an AH algebra A is the limit of an inductive sequences $(A,\phi_i),$ where each A_i is semi-homogeneous

$$A_i = \bigoplus_{j=1}^{n_i} p_{i,j}(C(X_{i,j}) \otimes \mathbb{K}) p_{i,j}$$

for some $n_i \in \mathbf{N}$, compact metric spaces $X_{i,j}$, and projections $p_{i,j} \in C(X_{i,j}) \otimes \mathbb{K}$.

We say an AH algebra has slow dimension growth if it has a decomposition (A_i, ϕ_i) satisfying

 $\lim \sup_{i \to \infty} \max_{1 \le j \le n_i} \{\dim X_{i,j} / \operatorname{rank}(p_{i,j})\} = 0.$

In particular, if each $X_{i,j}$ is point (or the interval [0,1], or S^1), then we call A AF algebra (AI algebra, or AT algebra).

Theorem 30 (Kodaka-O-Teruya:09). Let $P \subset A$ be an inclusion of separable unital C*-algebras and E a conditional expectation from A onto P with a finite index. Suppose that E has the Rokhlin property.

- 1. If A is an AF algebra, then P is also an AF algebra.
- 2. If A is a unital AI algebra, then P is a unital AI algebra.
- 3. If A is a unital AT algebra, then P is a unital AT algebra.

There is Lin's classification of simple unital, nuclear, separable, C*-algebras.

Definition 31. A simple unital C*-algebra has tracial topological rank zero if for any finite set \mathcal{F} , any $\varepsilon > 0$, and positive element $a \in A$ there exists a unital finite dimensional C*-algebra B of A with unit $1_B = p$ such that

1. $||px - xp|| < \varepsilon$ and $pxp \in_{\varepsilon} B$ for $x \in \mathcal{F}$.

2. $1_A - p$ is equivalent to a projection in \overline{aAa} .

Theorem 32 (Lin:00). The following conditions are equivalent for any simple, unital, separable C*-algebra A of real rank zero.

- 1. A is nuclear in the UCT class \mathcal{N} , has tracial topological rank zero.
- 2. A is an AH algebra of slow dimension growth.

Theorem 33 (Kodaka-O-Teruya:09). Let $P \subset A$ be an inclusion of separable unital C*-algebras and E a conditional expectation from A onto P with a finite index. Suppose that A is simple and E has the Rokhlin property. If A has tracial topological rank zero, then P has the tracial topological rank zero. Recently, there is a counterexample for Ell(A).

Theorem 34 (Toms:05). There are simple unital, separable, nuclear, and stably finite C*-algebras which agree on the Elliott invariant but are not isomorphic.

But there is possibility if we add some extra condition.

Theorem 35 (Lin:08). Let A and B be two simple unital inductive limits of generalized dimension drop algebras. Then $A \otimes \mathcal{Z} \cong B \otimes \mathcal{Z}$ if and only if $\operatorname{Ell}(A) \cong \operatorname{Ell}(B)$.

Here the C*-algebra \mathcal{Z} in the above theorem is called the Jiang-Su algebra which is inductive limit of the dimension drop algebras

 $I[p_n, d_n, q_n] = \{ f \in C[0, 1] \otimes M_{d_n} \colon f(0) \in M_{p_n} \otimes id_{d_n/p_n},$ $f(1) \in id_{d_n/q_n} \otimes M_{q_n} \},$

where p_n, d_n, q_n are positive integers with $d_n = p_n q_n$, and p_n and q_n are relatively prime.

[Winter:08] showed that if A is a simple unital ASH-algebra with the no dimension growth, then $A \otimes \mathcal{Z} \cong A$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Theorem 36 (O-Teruya:09). Let $P \subset A$ be an inclusion of separable unital C*-algebras and E a conditional expectation from A onto P with a finite index. If A is \mathcal{D} -absorbing, then P is \mathcal{D} -absorbing, where D is a separable unital strongly self-absorbing C*-algebra, that is, there is an isomorphism $\phi: \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$ such that ϕ is approximate unitarily equivalent to the embedding $d \mapsto d \otimes 1_{\mathcal{D}}$.

Note that

1. [Jiang-Su:99]

The Jiang-Su algebra \mathcal{Z} is strongly self-absorbing.

- In the case that G is a compact second countable group, or, Z [Hirshberg and Winter:07] showed that if A is D-absorbing, then the crossed product A ⋊_α G is D-absorbing assuming that the action of G on A has the Rokhlin property in the sense of Kishimoto.
- 3. [Winter:09] Every strongly self-absorbing C*-algerba is \mathcal{Z} stable.

There are several other important properties in the classification theory such as *the strict comparison of positive elements* in the Cuntz semigroups and *the finite decomposition property* etc. Those properties also hold under the assumption that a conditional expectation $E: A \rightarrow P$ has the Rokhlin property.

References

- [1] J. A. Jeong and H. Osaka, Extremally rich C*crossed products and the cancellation property, J. Austral. Math. Soc. (Series A) 64(1998), 285 - 301.
- [2] J. A. Jeong, H. Osaka, N. C. Phillips and T. Teruya, *Cancellation for inclusions of C*algebras of finite depth*, Indiana U. Math J. 58(2009), 1537 - 1564.
- [3] K. Kodaka, H. Osaka, and T. Teruya, The Rohlin property for inclusions of C*-algebras with a finite Watatani Index, Contemporary Mathematics 503(2009), 177 - 195.
- [4] H. Osaka, SP-Property for a pair of C*algebras, J. Operator Theory 46(2001), 159 - 171.
- [5] H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin property, to appear in Math. Z. (arXiv:math.OA/0704.3651).

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

- [6] H. Osaka and T. Teruya, Stable rank for depth two inclusion of C*-algebras, C. R. Math. Acad. Dci. Soc. R. Can. 29(2007), 28 - 32.
- [7] H. Osaka and T. Teruya, Strongly selfabsorbing property for inclusions of C*algebras with a finite Watatani index, preprint, 2010. (arXiv:1002.4233)
- [8] H. Osaka and T. Teruya, *Tracial* approximation property for crossed products by finite groups with the tracial Rokhlin property, in preparation.