Inclusion systems and amalgamated product of product systems

Mithun Mukherjee
(Joint work with B.V. Rajarama Bhat)

Indian Statistical Institute, Bangalore
mithun@isibang.ac.in

August 15, 2010

Abstract

Here we generalize the concept of spatial product, introduced by Skeide, of two product systems via a pair of normalized units. This new notion is called amalgamated tensor product of product systems of Hilbert spaces, and now the amalgamation can be done using a contractive morphism.

Abstract

Here we generalize the concept of spatial product, introduced by Skeide, of two product systems via a pair of normalized units. This new notion is called amalgamated tensor product of product systems of Hilbert spaces, and now the amalgamation can be done using a contractive morphism.
We parameterize all contractive morphism from a Type I product system to another Type I product system and compute index of amalgamated product through contractive morphisms.

Outline of the talk

M.Mukherjee

1 Powers' problem

system

Outline of the talk

M.Mukherjee

1 Powers' problem

2 Inclusion system

Outline of the talk

M.Mukherjee

1 Powers' problem

2 Inclusion system

3 Amalgamation

Outline of the talk

M.Mukherjee

1 Powers' problem

2 Inclusion system

3 Amalgamation

4 contractive morphism

Outline of the talk

M.Mukherjee

1 Powers' problem

2 Inclusion system

3 Amalgamation

4 contractive morphism

5 Index computation

Arveson [Continuous analogues of Fock space. Mem. Amer. Math. Soc.] associated to every E_{0} semigroup, a product system of Hilbert spaces. He showed that this association classifies E_{0} semigroups up to cocycle conjugacy.

Arveson [Continuous analogues of Fock space. Mem. Amer. Math. Soc.] associated to every E_{0} semigroup, a product system of Hilbert spaces. He showed that this association classifies E_{0} semigroups up to cocycle conjugacy.
In the context of product system of Hilbert modules, Skeide [The index of (white) noises and their product systems. I.D.A.Q.P.] introduced spatial product of product systems as there is no natural tensor product operation on product system of Hilbert modules where it identifies the two reference units and index is additive under spatial product.

At the 2002 AMS summer conference on 'Advances in Quantum Dynamics' held at Mount Holyoke, R.T. Powers posed the following problem : Let $\mathcal{B}(H)$ and $\mathcal{B}(K)$ be algebras of all bounded operators on two Hilbert spaces H and \mathcal{K}. Suppose $\phi=\left\{\phi_{t}: t \geq 0\right\}$ and $\psi=\left\{\psi_{t}: t \geq 0\right\}$ are two E_{0} semigroups on $\mathcal{B}(H)$ and $\mathcal{B}(K)$ respectively and $U=\left\{U_{t}: t \geq 0\right\}$ and $V=\left\{V_{t}: t \geq 0\right\}$ are two strongly continuous semigroups of isometries which intertwine ϕ_{t} and ψ_{t} respectively. Consider the CP semigroup τ_{t} on $\mathcal{B}(H \oplus K)$ defined by

$$
\tau_{t}\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right)=\left(\begin{array}{cc}
\phi_{t}(X) & U_{t} Y V_{t}^{*} \\
V_{t} Z U_{t}^{*} & \psi_{t}(W)
\end{array}\right)
$$

At the 2002 AMS summer conference on 'Advances in Quantum Dynamics' held at Mount Holyoke, R.T. Powers posed the following problem : Let $\mathcal{B}(H)$ and $\mathcal{B}(K)$ be algebras of all bounded operators on two Hilbert spaces H and \mathcal{K}. Suppose $\phi=\left\{\phi_{t}: t \geq 0\right\}$ and $\psi=\left\{\psi_{t}: t \geq 0\right\}$ are two E_{0} semigroups on $\mathcal{B}(H)$ and $\mathcal{B}(K)$ respectively and $U=\left\{U_{t}: t \geq 0\right\}$ and $V=\left\{V_{t}: t \geq 0\right\}$ are two strongly continuous semigroups of isometries which intertwine ϕ_{t} and ψ_{t} respectively. Consider the CP semigroup τ_{t} on $\mathcal{B}(H \oplus K)$ defined by $\tau_{t}\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right)=\left(\begin{array}{ll}\phi_{t}(X) & U_{t} Y V_{t}^{*} \\ V_{t} Z U_{t}^{*} & \psi_{t}(W)\end{array}\right)$.
How is the minimal dilation (in the sense of Bhat dilation) of τ related to ϕ and ψ or more specifically 'What is the product system of the Powers' sum τ in terms of the product systems of ϕ and ψ. Is it the tensor product?'

At the 2002 AMS summer conference on 'Advances in Quantum Dynamics' held at Mount Holyoke, R.T. Powers posed the following problem : Let $\mathcal{B}(H)$ and $\mathcal{B}(K)$ be algebras of all bounded operators on two Hilbert spaces H and \mathcal{K}. Suppose $\phi=\left\{\phi_{t}: t \geq 0\right\}$ and $\psi=\left\{\psi_{t}: t \geq 0\right\}$ are two E_{0} semigroups on $\mathcal{B}(H)$ and $\mathcal{B}(K)$ respectively and $U=\left\{U_{t}: t \geq 0\right\}$ and $V=\left\{V_{t}: t \geq 0\right\}$ are two strongly continuous semigroups of isometries which intertwine ϕ_{t} and ψ_{t} respectively. Consider the CP semigroup τ_{t} on $\mathcal{B}(H \oplus K)$ defined by $\tau_{t}\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right)=\left(\begin{array}{ll}\phi_{t}(X) & U_{t} Y V_{t}^{*} \\ V_{t} Z U_{t}^{*} & \psi_{t}(W)\end{array}\right)$.
How is the minimal dilation (in the sense of Bhat dilation) of τ related to ϕ and ψ or more specifically 'What is the product system of the Powers' sum τ in terms of the product systems of ϕ and ψ. Is it the tensor product?'
Skeide identified the problem as a spatial product through normalized units.

At the 2002 AMS summer conference on 'Advances in Quantum Dynamics' held at Mount Holyoke, R.T. Powers posed the following problem : Let $\mathcal{B}(H)$ and $\mathcal{B}(K)$ be algebras of all bounded operators on two Hilbert spaces H and \mathcal{K}. Suppose $\phi=\left\{\phi_{t}: t \geq 0\right\}$ and $\psi=\left\{\psi_{t}: t \geq 0\right\}$ are two E_{0} semigroups on $\mathcal{B}(H)$ and $\mathcal{B}(K)$ respectively and $U=\left\{U_{t}: t \geq 0\right\}$ and $V=\left\{V_{t}: t \geq 0\right\}$ are two strongly continuous semigroups of isometries which intertwine ϕ_{t} and ψ_{t} respectively. Consider the CP semigroup τ_{t} on $\mathcal{B}(H \oplus K)$ defined by $\tau_{t}\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right)=\left(\begin{array}{ll}\phi_{t}(X) & U_{t} Y V_{t}^{*} \\ V_{t} Z U_{t}^{*} & \psi_{t}(W)\end{array}\right)$.
How is the minimal dilation (in the sense of Bhat dilation) of τ related to ϕ and ψ or more specifically 'What is the product system of the Powers' sum τ in terms of the product systems of ϕ and ψ. Is it the tensor product?'
Skeide identified the problem as a spatial product through normalized units.
Later Powers [Addition of spatial E-semigroups, Operator algebras, quantization, and non commutative geometry, 281-298, Contemp. Math.] showed that it is not the tensor product.

Notion of spatial product depends upon the fact that units (intertwining semigroups) $\left\{U_{t}\right\},\left\{V_{t}\right\}$ are normalized, though τ can be constructed even when they are just contractive.

Notion of spatial product depends upon the fact that units (intertwining semigroups) $\left\{U_{t}\right\},\left\{V_{t}\right\}$ are normalized, though τ can be constructed even when they are just contractive.
More generally, suppose $\alpha=\left(\alpha_{t}\right)_{t \geq 0}, \beta=\left(\beta_{t}\right)_{t \geq 0}$ are CP semigroups on $\mathcal{B}(H)$ and $\mathcal{B}(K)$ respectively. Also suppose $\eta=\left(\eta_{t}\right)_{t \geq 0}: \mathcal{B}(K, H) \rightarrow \mathcal{B}(K, H)$ is a semigroup of bounded operators.
Then $\tau=\left(\tau_{t}\right)_{t \geq 0}\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right):=\left(\begin{array}{cc}\alpha_{t}(X) & \eta_{t}(Y) \\ \eta_{t}\left(Z^{*}\right)^{*} & \beta_{t}(W)\end{array}\right)$ is a CP semigroup on $\mathcal{B}(H \oplus K)$. Then what is the product system of τ is related to those of α and β ?

Inclusion system

contractive
morphism

Definition

An inclusion system (E, β) is a family of Hilbert spaces $E=\left\{E_{t}, t \in(0, \infty)\right\}$ together with isometries $\beta_{s, t}: E_{s+t} \rightarrow E_{s} \otimes E_{t}$, for $s, t \in(0, \infty)$, such that \forall $r, s, t \in(0, \infty), \quad\left(\beta_{r, s} \otimes 1_{E_{t}}\right) \beta_{r+s, t}=\left(1_{E_{r}} \otimes \beta_{s, t}\right) \beta_{r, s+t}$. It is said to be a product system if further every $\beta_{s, t}$ is a unitary.

Definition

An inclusion system (E, β) is a family of Hilbert spaces $E=\left\{E_{t}, t \in(0, \infty)\right\}$ together with isometries $\beta_{s, t}: E_{s+t} \rightarrow E_{s} \otimes E_{t}$, for $s, t \in(0, \infty)$, such that \forall $r, s, t \in(0, \infty), \quad\left(\beta_{r, s} \otimes 1_{E_{t}}\right) \beta_{r+s, t}=\left(1_{E_{r}} \otimes \beta_{s, t}\right) \beta_{r, s+t}$. It is said to be a product system if further every $\beta_{s, t}$ is a unitary.

They were also introduced by Shalit and Solel, under the name subproduct systems, [Subproduct systems, Documenta Mathematica]

Definition

An inclusion system (E, β) is a family of Hilbert spaces $E=\left\{E_{t}, t \in(0, \infty)\right\}$ together with isometries $\beta_{s, t}: E_{s+t} \rightarrow E_{s} \otimes E_{t}$, for $s, t \in(0, \infty)$, such that \forall $r, s, t \in(0, \infty), \quad\left(\beta_{r, s} \otimes 1_{E_{t}}\right) \beta_{r+s, t}=\left(1_{E_{r}} \otimes \beta_{s, t}\right) \beta_{r, s+t}$. It is said to be a product system if further every $\beta_{s, t}$ is a unitary.

They were also introduced by Shalit and Solel, under the name subproduct systems, [Subproduct systems, Documenta Mathematica] We will assume all inclusion systems are algebraic i.e. without any measurabilty structure

Inclusion system gives rise to product system

M.Mukherjee

Powers'

problem
Inclusion
system
For $t \in \mathbb{R}_{+}$, let $J_{t}=\left\{\left(t_{n}, t_{n-1}, \ldots, t_{1}\right): t_{i}>0, \sum_{i=1}^{n} t_{i}=t, n \geq 1\right\}$.

Inclusion system gives rise to product system

For $t \in \mathbb{R}_{+}$, let $J_{t}=\left\{\left(t_{n}, t_{n-1}, \ldots, t_{1}\right): t_{i}>0, \sum_{i=1}^{n} t_{i}=t, n \geq 1\right\}$. On J_{t} define a partial order $\mathbf{t} \geq \mathbf{s}=\left(s_{m}, s_{m-1}, \ldots, s_{1}\right)$ if for each i, $(1 \leq i \leq m)$ there exists (unique) $\mathbf{s}_{i} \in J_{s_{i}}$ such that $\mathbf{t}=\mathbf{s}_{m} \smile \mathbf{s}_{m-1} \smile \cdots \smile \mathbf{s}_{1}$.

Inclusion system gives rise to product system

For $t \in \mathbb{R}_{+}$, let $J_{t}=\left\{\left(t_{n}, t_{n-1}, \ldots, t_{1}\right): t_{i}>0, \sum_{i=1}^{n} t_{i}=t, n \geq 1\right\}$. On J_{t} define a partial order $\mathbf{t} \geq \mathbf{s}=\left(s_{m}, s_{m-1}, \ldots, s_{1}\right)$ if for each i, $(1 \leq i \leq m)$ there exists (unique) $\mathbf{s}_{i} \in J_{s_{i}}$ such that $\mathbf{t}=\mathbf{s}_{m} \smile \mathbf{s}_{m-1} \smile \cdots \smile \mathbf{s}_{1}$.
For $\mathbf{t}=\left(t_{n}, t_{n-1}, \ldots t_{1}\right)$ in J_{t} define $E_{\mathbf{t}}=E_{t_{n}} \otimes E_{t_{n-1}} \otimes \cdots \otimes E_{t_{1}}$.

Inclusion system gives rise to product system

For $t \in \mathbb{R}_{+}$, let $J_{t}=\left\{\left(t_{n}, t_{n-1}, \ldots, t_{1}\right): t_{i}>0, \sum_{i=1}^{n} t_{i}=t, n \geq 1\right\}$. On J_{t} define a partial order $\mathbf{t} \geq \mathbf{s}=\left(s_{m}, s_{m-1}, \ldots, s_{1}\right)$ if for each i, $(1 \leq i \leq m)$ there exists (unique) $\mathbf{s}_{i} \in J_{s_{i}}$ such that $\mathbf{t}=\mathbf{s}_{m} \smile \mathbf{s}_{m-1} \smile \cdots \smile \mathbf{s}_{1}$.
For $\mathbf{t}=\left(t_{n}, t_{n-1}, \ldots t_{1}\right)$ in J_{t} define $E_{\mathbf{t}}=E_{t_{n}} \otimes E_{t_{n-1}} \otimes \cdots \otimes E_{t_{1}}$.

For $t \in \mathbb{R}_{+}$, let $J_{t}=\left\{\left(t_{n}, t_{n-1}, \ldots, t_{1}\right): t_{i}>0, \sum_{i=1}^{n} t_{i}=t, n \geq 1\right\}$.
On J_{t} define a partial order $\mathbf{t} \geq \mathbf{s}=\left(s_{m}, s_{m-1}, \ldots, s_{1}\right)$ if for each i, $(1 \leq i \leq m)$ there exists (unique) $\mathbf{s}_{i} \in J_{s_{i}}$ such that $\mathbf{t}=\mathbf{s}_{m} \smile \mathbf{s}_{m-1} \smile \cdots \smile \mathbf{s}_{1}$.
For $\mathbf{t}=\left(t_{n}, t_{n-1}, \ldots t_{1}\right)$ in J_{t} define $E_{\mathbf{t}}=E_{t_{n}} \otimes E_{t_{n-1}} \otimes \cdots \otimes E_{t_{1}}$.

Theorem

Suppose (E, β) is an inclusion system. Let $\mathcal{E}_{t}=$ indlim $_{J_{t}} E_{\mathrm{s}}$ be the inductive limit of E_{s} over J_{t} for $t>0$. Then $\mathcal{E}=\left\{\mathcal{E}_{t}: t>0\right\}$ has the structure of a product system of Hilbert spaces.

Units and morphisms

Units and morphisms

Definition

Let (E, β) and (F, γ) be two inclusion systems. Let $A=\left\{A_{t}: t>0\right\}$ be a family of linear maps $A_{t}: E_{t} \rightarrow F_{t}$, satisfying $\left\|A_{t}\right\| \leq e^{t k}$ for some $k \in \mathbb{R}$. Then A is said to be a morphism or a weak morphism from (E, β) to (F, γ) if

$$
A_{s+t}=\gamma_{s, t}^{*}\left(A_{s} \otimes A_{t}\right) \beta_{s, t} \quad \forall s, t>0
$$

It is said to be a strong morphism if

$$
\gamma_{s, t} A_{s, t}=\left(A_{s} \otimes A_{t}\right) \beta_{s, t} \quad \forall s, t>0
$$

Units and morphisms

Definition

Let (E, β) and (F, γ) be two inclusion systems. Let $A=\left\{A_{t}: t>0\right\}$ be a family of linear maps $A_{t}: E_{t} \rightarrow F_{t}$, satisfying $\left\|A_{t}\right\| \leq e^{t k}$ for some $k \in \mathbb{R}$. Then A is said to be a morphism or a weak morphism from (E, β) to (F, γ) if

$$
A_{s+t}=\gamma_{s, t}^{*}\left(A_{s} \otimes A_{t}\right) \beta_{s, t} \quad \forall s, t>0
$$

It is said to be a strong morphism if

$$
\gamma_{s, t} A_{s, t}=\left(A_{s} \otimes A_{t}\right) \beta_{s, t} \quad \forall s, t>0
$$

Units and morphisms

Definition

Let (E, β) and (F, γ) be two inclusion systems. Let $A=\left\{A_{t}: t>0\right\}$ be a family of linear maps $A_{t}: E_{t} \rightarrow F_{t}$, satisfying $\left\|A_{t}\right\| \leq e^{t k}$ for some $k \in \mathbb{R}$. Then A is said to be a morphism or a weak morphism from (E, β) to (F, γ) if

$$
A_{s+t}=\gamma_{s, t}^{*}\left(A_{s} \otimes A_{t}\right) \beta_{s, t} \quad \forall s, t>0
$$

It is said to be a strong morphism if

$$
\gamma_{s, t} A_{s, t}=\left(A_{s} \otimes A_{t}\right) \beta_{s, t} \quad \forall s, t>0
$$

Definition

Let (E, β) be an inclusion system. Let $u=\left\{u_{t}: t>0\right\}$ be a family of vectors with $u_{t} \in E_{t}$, for all $t>0$, such that $\left\|u_{t}\right\| \leq e^{t k}$ for some $k \in \mathbb{R}$ and $u \not \equiv 0$. Then u is said to be a unit or a weak unit if

$$
u_{s+t}=\beta_{s, t}^{*}\left(u_{s} \otimes u_{t}\right) \quad \forall s, t>0
$$

It is said to be a strong unit if

$$
\beta_{s, t} u_{s+t}=u_{s} \otimes u_{t} \quad \forall s, t>0
$$

Lifting properties

Lifting properties

Theorem

Let (E, β) be an inclusion system and let (\mathcal{E}, B) be the product system generated by it. Then the canonical map $i_{t}: E_{t} \rightarrow \mathcal{E}_{t}, t>0$ is an isometric strong morphism of inclusion systems. Further i^{*} is an isomorphism between units of (\mathcal{E}, B) and units of (E, β).

Lifting properties

Theorem

Let (E, β) be an inclusion system and let (\mathcal{E}, B) be the product system generated by it. Then the canonical map $i_{t}: E_{t} \rightarrow \mathcal{E}_{t}, t>0$ is an isometric strong morphism of inclusion systems. Further i^{*} is an isomorphism between units of (\mathcal{E}, B) and units of (E, β).

Lifting properties

Theorem

Let (E, β) be an inclusion system and let (\mathcal{E}, B) be the product system generated by it. Then the canonical map $i_{t}: E_{t} \rightarrow \mathcal{E}_{t}, t>0$ is an isometric strong morphism of inclusion systems. Further i^{*} is an isomorphism between units of (\mathcal{E}, B) and units of (E, β).

Theorem

Let $(E, \beta),(F, \gamma)$ be two inclusion systems generating two product systems $(\mathcal{E}, B),(\mathcal{F}, C)$ respectively. Let i, j be the respective inclusion maps. Suppose $A:(E, \beta) \rightarrow(F, \gamma)$ is a weak morphism then there exists a unique morphism $\hat{A}:(\mathcal{E}, B) \rightarrow(\mathcal{F}, C)$ such that $A_{s}=j_{s}^{*} \hat{A}_{s} i_{s}$ for all s. This is a one to one correspondence of weak morphisms. Further more, \hat{A} is isometric/unitary if A is isometric/unitary.

With basic theory of inclusion systems and their morphisms in place, we look at inclusion systems arising from quantum dynamical semigroups. Let H be a a Hilbert space and let $\mathcal{B}(H)$ be the algebra of all bounded operators on H. Let $\tau=\left\{\tau_{t}: t \geq 0\right\}$ be a quantum dynamical semigroup on $\mathcal{B}(H)$. For $t \geq 0$, let $\left(\pi_{t}, V_{t}, K_{t}\right)$ be the minimal Stinespring dilation of τ_{t}. Now fix a unit vector $a \in H$, take

$$
E_{t}=\overline{\operatorname{span}}\left\{\pi_{t}(|a\rangle\langle g|) h: g, h \in H\right\} \subseteq K_{t}
$$

Further fix an ortho-normal basis $\left\{e_{k}\right\}$ of H and define $\beta_{s, t}: E_{s+t} \rightarrow E_{s} \otimes E_{t}$ by

$$
\beta_{s, t}\left(\pi_{s+t}\left(|a\rangle\langle g| V_{s+t} h\right)=\sum_{k} \pi_{s}\left(|a\rangle\langle g) V_{s} e_{k} \otimes \pi_{t}\left(|a\rangle\left\langle e_{k}\right|\right) V_{t} h\right.\right.
$$

Then (E, β) is an inclusion system.

Amalgamation

Suppose H and K are two Hilbert spaces and $D: K \rightarrow H$ is a linear contraction. Define a semi inner product on $H \oplus K$ by

$$
\begin{aligned}
\left\langle\binom{ u_{1}}{v_{1}},\binom{u_{2}}{v_{2}}\right\rangle_{D} & =\left\langle u_{1}, u_{2}\right\rangle+\left\langle u_{1}, D v_{2}\right\rangle+\left\langle D v_{1}, u_{2}\right\rangle+\left\langle v_{1}, v_{2}\right\rangle \\
& =\left\langle\binom{ u_{1}}{v_{1}}, \tilde{D}\binom{u_{2}}{v_{2}}\right\rangle,
\end{aligned}
$$

where $\tilde{D}:=\left[\begin{array}{cc}I & D \\ D^{*} & I\end{array}\right]$. Note that as D is contractive, \tilde{D} is positive definite. Take

$$
N=\left\{\binom{u}{v}:\left\langle\binom{ u}{v},\binom{u}{v}\right\rangle_{D}=0\right\} .
$$

Then N is the kernel of bounded operator \tilde{D} and hence it is a closed subspace of $H \oplus K$. Set G as completion of $(H \oplus K) / N)$ with respect to norm of $\langle\cdot, .\rangle_{D}$. We denote G by $H \oplus_{D} K$.

Now we consider amalgamation at the level of inclusion systems. Let (E, β) and (F, γ) be two inclusion systems. Let $D=\left\{D_{s}: s>0\right\}$ be a weak contractive morphism from F to E. Define $G_{s}:=E_{s} \oplus_{D_{s}} F_{s}$ and $\delta_{s, t}:=i_{s, t}\left(\beta_{s, t} \oplus_{D} \gamma_{s, t}\right)$ where $i_{s, t}:\left(E_{s} \otimes E_{t}\right) \oplus_{D_{s} \otimes D_{t}}\left(F_{s} \otimes F_{t}\right) \rightarrow G_{s} \otimes G_{t}$ is the map defined by

$$
i_{s, t}\left[\begin{array}{c}
u_{1} \otimes u_{2} \\
v_{1} \otimes v_{2}
\end{array}\right]=\left[\begin{array}{c}
u_{1} \\
0
\end{array}\right] \otimes\left[\begin{array}{c}
u_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
v_{1}
\end{array}\right] \otimes\left[\begin{array}{c}
0 \\
v_{2}
\end{array}\right],
$$

and $\left(\beta_{s, t} \oplus D \gamma_{s, t}\right): E_{s+t} \oplus_{D_{s+t}} F_{s+t} \rightarrow E_{s} \otimes E_{t} \oplus_{D_{s} \otimes D_{t}} F_{s} \otimes F_{t}$ is the map defined by

$$
\left(\beta_{s, t} \oplus_{D} \gamma_{s, t}\right)\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\beta_{s, t}(u) \\
\gamma_{s, t}(v)
\end{array}\right]
$$

Now we consider amalgamation at the level of inclusion systems. Let (E, β) and (F, γ) be two inclusion systems. Let $D=\left\{D_{s}: s>0\right\}$ be a weak contractive morphism from F to E. Define $G_{s}:=E_{s} \oplus_{D_{s}} F_{s}$ and $\delta_{s, t}:=i_{s, t}\left(\beta_{s, t} \oplus_{D} \gamma_{s, t}\right)$ where $i_{s, t}:\left(E_{s} \otimes E_{t}\right) \oplus_{D_{s} \otimes D_{t}}\left(F_{s} \otimes F_{t}\right) \rightarrow G_{s} \otimes G_{t}$ is the map defined by

$$
i_{s, t}\left[\begin{array}{c}
u_{1} \otimes u_{2} \\
v_{1} \otimes v_{2}
\end{array}\right]=\left[\begin{array}{c}
u_{1} \\
0
\end{array}\right] \otimes\left[\begin{array}{c}
u_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
v_{1}
\end{array}\right] \otimes\left[\begin{array}{c}
0 \\
v_{2}
\end{array}\right],
$$

and $\left(\beta_{s, t} \oplus D \gamma_{s, t}\right): E_{s+t} \oplus_{D_{s+t}} F_{s+t} \rightarrow E_{s} \otimes E_{t} \oplus_{D_{s} \otimes D_{t}} F_{s} \otimes F_{t}$ is the map defined by

$$
\left(\beta_{s, t} \oplus_{D} \gamma_{s, t}\right)\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\beta_{s, t}(u) \\
\gamma_{s, t}(v)
\end{array}\right]
$$

Now we consider amalgamation at the level of inclusion systems. Let (E, β) and (F, γ) be two inclusion systems. Let $D=\left\{D_{s}: s>0\right\}$ be a weak contractive morphism from F to E. Define $G_{s}:=E_{s} \oplus_{D_{s}} F_{s}$ and $\delta_{s, t}:=i_{s, t}\left(\beta_{s, t} \oplus_{D} \gamma_{s, t}\right)$ where $i_{s, t}:\left(E_{s} \otimes E_{t}\right) \oplus_{D_{s} \otimes D_{t}}\left(F_{s} \otimes F_{t}\right) \rightarrow G_{s} \otimes G_{t}$ is the map defined by

$$
i_{s, t}\left[\begin{array}{c}
u_{1} \otimes u_{2} \\
v_{1} \otimes v_{2}
\end{array}\right]=\left[\begin{array}{c}
u_{1} \\
0
\end{array}\right] \otimes\left[\begin{array}{c}
u_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
v_{1}
\end{array}\right] \otimes\left[\begin{array}{c}
0 \\
v_{2}
\end{array}\right],
$$

and $\left(\beta_{s, t} \oplus D \gamma_{s, t}\right): E_{s+t} \oplus_{D_{s+t}} F_{s+t} \rightarrow E_{s} \otimes E_{t} \oplus_{D_{s} \otimes D_{t}} F_{s} \otimes F_{t}$ is the map defined by

$$
\left(\beta_{s, t} \oplus_{D} \gamma_{s, t}\right)\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\beta_{s, t}(u) \\
\gamma_{s, t}(v)
\end{array}\right]
$$

Proposition

Let $(G, \delta)=\left\{G_{s}, \delta_{s, t}: s, t>0\right\}$ be defined as above. Then $\{G, \delta\}$ forms an inclusion system

Universal properties of amalgamation

Universal properties of amalgamation

Definition
If $(\mathcal{E}, B),(\mathcal{F}, C)$, and (\mathcal{G}, L) are product systems generated respectively by $(E, \beta),(F, \gamma)$, and (G, δ), then (\mathcal{G}, L) is said to be the amalgamated product of (\mathcal{E}, B) and (\mathcal{F}, C) via D and is denoted by $\mathcal{G}=: \mathcal{E} \otimes_{D} \mathcal{F}$.

Universal properties of amalgamation

Definition
If $(\mathcal{E}, B),(\mathcal{F}, C)$, and (\mathcal{G}, L) are product systems generated respectively by $(E, \beta),(F, \gamma)$, and (G, δ), then (\mathcal{G}, L) is said to be the amalgamated product of (\mathcal{E}, B) and (\mathcal{F}, C) via D and is denoted by $\mathcal{G}=: \mathcal{E} \otimes_{D} \mathcal{F}$.

Universal properties of amalgamation

Definition

If $(\mathcal{E}, B),(\mathcal{F}, C)$, and (\mathcal{G}, L) are product systems generated respectively by $(E, \beta),(F, \gamma)$, and (G, δ), then (\mathcal{G}, L) is said to be the amalgamated product of (\mathcal{E}, B) and (\mathcal{F}, C) via D and is denoted by $\mathcal{G}=: \mathcal{E} \otimes_{D} \mathcal{F}$.

Theorem

Suppose $\left(\mathcal{E}, W^{\mathcal{E}}\right)$ and $\left(\mathcal{F}, W^{\mathcal{F}}\right)$ are two product systems and let $C:\left(\mathcal{F}, W^{\mathcal{F}}\right) \rightarrow\left(\mathcal{E}, W^{\mathcal{E}}\right)$ be a contractive morphism. Suppose $\left(\mathcal{G}, W^{\mathcal{G}}\right)$ is the amalgamated product of $\left(\mathcal{E}, W^{\mathcal{E}}\right)$ and $\left(\mathcal{F}, W^{\mathcal{F}}\right)$. i.e. $\mathcal{G}=\mathcal{E} \otimes_{C} \mathcal{F}$. Then there are isometric product system morphism $I: \mathcal{E} \rightarrow \mathcal{G}$ and $J: \mathcal{F} \rightarrow \mathcal{G}$ such that the following holds:
(i) $\left\langle I_{s}(x), J_{s}(y)\right\rangle=\left\langle x, C_{s} y\right\rangle$ for all $x \in \mathcal{E}_{s}$ and $y \in \mathcal{F}_{s}$.
(ii) $\mathcal{G}=I(\mathcal{E}) \bigvee J(\mathcal{F})$.

Conversely, suppose \mathcal{E} and \mathcal{F} are two product subsystems of a product system (\mathcal{H}, W). Then there is a contraction morphism $C: \mathcal{F} \rightarrow \mathcal{E}$ such that the amalgamated product \mathcal{G} of \mathcal{E} and \mathcal{F} via C is isomorphic via ϕ to the product system generated by \mathcal{E} and \mathcal{F}. i.e. $\mathcal{E} \otimes c \mathcal{F} \sim \mathcal{E} \bigvee \mathcal{F}$ which is canonical in the sense that

$$
\phi\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=a+b, a \in \mathcal{E}, b \in \mathcal{F}
$$

Answer to Powers problem

Theorem

Let ϕ, ψ, τ be CP semigroups and $(E, \beta),(F, \gamma),(G, \delta)$ be their corresponding inclusion systems. Let $D_{t}: F_{t} \rightarrow E_{t}$ by $D_{t}=P_{E_{t}} \pi_{t}(|a\rangle\langle b|) \mid F_{t}$ (where $P_{E_{t}}$ is the projection onto E_{t}). Then $D=\left\{D_{t}: t>0\right\}$ is a contractive morphism from (F, γ) to (E, β). Moreover, (G, δ) is isomorphic to amalgamated sum of (E, β) and (F, γ) via D.

Contractive morphisms

In this Section we will mainly concentrate on the category of product systems as defined by Arveson. In particular, all Hilbert spaces are separable and the product system has a measurable structure. By a contractive morphism, we mean a contractive morphism of product systems in that category i.e. the family of maps is a measurable family. We will call this category as category of Arveson's product systems.

Contractive morphisms

In this Section we will mainly concentrate on the category of product systems as defined by Arveson. In particular, all Hilbert spaces are separable and the product system has a measurable structure. By a contractive morphism, we mean a contractive morphism of product systems in that category i.e. the family of maps is a measurable family. We will call this category as category of Arveson's product systems. Define $\mathcal{C}\left(K_{2}, K_{1}\right) \subset \mathbb{C} \times K_{2} \times K_{1} \times B\left(K_{2}, K_{1}\right)$ as the set of all tuples (q, x, u, A) such that A is a contraction, $A^{*} u+x \in \operatorname{Range}\left(I-A^{*} A\right)^{1 / 2}$, $q+\bar{q} \geq\|u\|^{2}+q_{0}(A, x, u)$ where $q_{0}(A, x, u)=\inf \left\{\|a\|^{2}: A^{*} x+u=\left(I-A^{*} A\right)^{1 / 2} a\right\}$. Equivalently,

$$
\left(\begin{array}{cc}
q+\bar{q}-\|u\|^{2} & -\left(A^{*} u+x\right)^{*} \\
-\left(A^{*} u+x\right) & I-A^{*} A
\end{array}\right) \geq 0
$$

Proposition

Suppose D is a contractive morphism from the product system $\Gamma\left(L^{2}[0, t], K_{2}\right)$ to the product system $\Gamma\left(L^{2}(0, t), K_{1}\right)$. Then there exists $(q, x, u, A) \in \mathcal{C}\left(K_{2}, K_{1}\right)$ such that $D_{t}=[q, x, u, A]_{t}$. Conversely, for any tuple $(q, x, u, A) \in \mathcal{C}\left(K_{2}, K_{1}\right),[q, x, u, A]_{t}$ defines a contractive morphism from $\Gamma\left(L^{2}(0, t), K_{2}\right)$ to $\Gamma\left(L^{2}(0, t), K_{1}\right)$.

Index computation

We will restrict ourselves into a subclass where the amalgamated product is an Arveson's product system. This is equivalent to the following assumption that there is a big Arveson's product system \mathcal{H} which contains the two systems \mathcal{E} and \mathcal{F} as subsystems.

Index computation

We will restrict ourselves into a subclass where the amalgamated product is an Arveson's product system. This is equivalent to the following assumption that there is a big Arveson's product system \mathcal{H} which contains the two systems \mathcal{E} and \mathcal{F} as subsystems.

Index computation

We will restrict ourselves into a subclass where the amalgamated product is an Arveson's product system. This is equivalent to the following assumption that there is a big Arveson's product system \mathcal{H} which contains the two systems \mathcal{E} and \mathcal{F} as subsystems.

Theorem

Suppose \mathcal{E} and \mathcal{F} are two spatial Arveson product systems of index k_{1} and k_{2} respectively. Let $D: \mathcal{F} \rightarrow \mathcal{E}$ be a contractive morphism such that $\mathcal{E} \otimes_{D} \mathcal{F}$ is an Arveson product system. Then $\left.D\right|_{\mathcal{F}^{\prime}}: \mathcal{F}^{\prime} \rightarrow \mathcal{E}^{\prime}$ is a contractive morphism. So they can be represented as $\mathcal{E}_{t}^{\prime}=\Gamma_{\text {sym }}\left(L^{2}[0, t], K_{1}\right)$ and $\mathcal{F}_{t}^{\prime}=\Gamma_{\text {sym }}\left(L^{2}[0, t], K_{2}\right)$. Then $\left.D_{t}\right|_{\mathcal{F}_{t}^{\prime}}=[q, x, y, A]_{t}$ for some $(q, x, y, A) \in \mathcal{C}\left(K_{2}, K_{1}\right)$ and

$$
\text { ind }\left(\mathcal{E} \otimes_{D} \mathcal{F}\right)=\left\{\begin{array}{cc}
\infty & \text { if } k_{1} \text { or } k_{2} \text { is } \infty \\
k_{1}+k_{2}-N\left(I-A^{*} A\right) & \text { if } q+\bar{q}-\|y\|^{2}=\left\langle x+A^{*} y, a\right\rangle \\
& \text { where }\left(I-A^{*} A\right) a=x+A^{*} y \\
k_{1}+k_{2}-N\left(I-A^{*} A\right)+1 & \text { otherwise }
\end{array}\right.
$$

Spatial product

Corollary

Suppose \mathcal{E} and \mathcal{F} are two spatial product systems of index k_{1} and k_{2} respectively. Let u^{0} and v^{0} be two units of \mathcal{E} and \mathcal{F} respectively such that $\left\|u_{t}^{0}\right\|,\left\|v_{t}^{0}\right\| \leq 1$ for all $t>0$. Set $D_{t}=\left|u_{t}^{0}\right\rangle\left\langle v_{t}^{0}\right|$. Then $D_{t}: \mathcal{F}_{t} \rightarrow \mathcal{E}_{t}$ is a contractive morphism and

$$
\text { ind }\left(\mathcal{E} \otimes_{D} \mathcal{F}\right)=\left\{\begin{array}{cc}
k_{1}+k_{2} & \text { if }\left\|u_{t}\right\|=\left\|v_{t}\right\|=1 \text { for all } t>0 \\
k_{1}+k_{2}+1 & \text { otherwise }
\end{array}\right.
$$

References

M.Mukherje

Bhat,Mukherjee,Inclusion systems and amalgamated product of product systems, IDAQP,March 2010.

References

Bhat,Mukherjee,Inclusion systems and amalgamated product of product systems, IDAQP,March 2010.
Mukherjee, Index computation for amalgamated product of product systems, to appear in BJMA.

References

Bhat, Mukherjee, Inclusion systems and amalgamated product of product systems, IDAQP,March 2010.
Mukherjee, Index computation for amalgamated product of product systems, to appear in BJMA.

Thank you

